アドバンスソフト梾式会社が開発•販売する科学技術訂算用ソフトウェア

総合カタログ

2023 年度版

アドバンスソフト株式会社

[^0]

镹立の目約と経緯

 アは欧米のソフトウェアにほほほ独占されている状況にありました。この状況を打破すべく，計算科学技怵用の㢆業庶用 ソフトウェアの研究開発から実用化までを目指す，文部科学省1Tプログラム「戦路的荎盘ソフトウェアの開発プロジェ クトが実施されました。
アドパンスソフト株式会社は，東京大学生裏技柬研究所とともにこのプロジェクトに参加し，ソフトウェア開発の中核 を担うとともに，開発されたソフトウェアの実用化，事業化することを目的として，2002年に㓱業されました。

アドバンスソフト森式会社が提供するサービス

- 椐管科学技術用ソフトウェアの開発の請負 - 䎣算科子技術用ソフトウェアによる解析	－計算科学技怵用ソフトウェアの販売 －セミナー，コンサルティング	
webページからダウンロードしてください。	ウェアの綾合カタログは，	

アドバンスソフト森式会社が開発•烠売する主なソフトウェア

流体解析ソフトウェア Advance／FrontFlow／red
気液二相流解析ソフトウェア Advance／FrontFlow／MP
高速流解析ソフトウェア Advance／FOCUS－i
構造解析ソフトウェア Advance／FrontSTR
汎用プリポストプロセッサ Advance／REVOCAP
管路系液体過渡解析ソフトウェア Advance／FrontNet／Ω
管路系流体過渡解析ソフトウェア Advance／FrontNet／「
音幚解析ソフトウェア Advance／FrontNoise
河川氾濫シミュレーションシステム Advance／RiverFlow
大気拡散影響予測システム Advance／Emerg
第一原理計算ソフトウェア Advance／PHASE
ナノ材料解析統合GUI Advance／NanoLabo
ニューラルネットワーク分子動力学システム Advance／NeuralMD
3次元TCADシステム Advance／TCAD
電磁波解析ソフトウェア Advance／ParallelWave
過酷事故時の原子炉格納容器•原子炉建屋の熱流動解析コード BAROC
深層学習用ツールAdvance／iMacle

非常勤専門職（時給 $3,000 \sim 5,000 円)$ も芧集中。勤務時問等は応相談！

修士修了の方，博士号取得者，中途の方も随時募集しています！ ぜひお問い合わせください。「オンライン会社說明会を開催しております。 アドバンスソフト株式会社 人事部 採用担当 小池太一 TEL：03－6826－3970 URL：https：／／www．advancesoft．jp／aboutus／recruit／ E－mail：recruit＠advancesoft．jp

お問し合わせ

〒101－0062 東京郖干代田区神田幾河台四丁目3罾地 新お茶の水ビルディング17前西
TEL：03－6826－3971 FAX：03－5283－6580 URL：http：／／www．advancesoft．jp／
E－mail：office＠advancesoft．jp

目次

【流体】
流体解析ソフトウェア Advance／FrontFlow／red 1
気液二相流解析ソフトウェア Advance／FrontFlow／MP 2
高速流解析ソフトウェア Advance／FOCUS－i 3
【構造】
構造解析ソフトウェア Advance／FrontSTR 4
【プリポスト】
汎用プリポストプロセッサ Advance／REVOCAP 5
【管路系】
管路系液体過渡解析ソフトウェア Advance／FrontNet $/ \Omega$ 6
管路系流体過渡解析ソフトウェア Advance／FrontNet／Г 7
【音響】
音響解析ソフトウェア Advance／FrontNoise 8
【防災】
河川汇濫シミュレーションシステム Advance／RiverFlow 9
大気拡散影響予測システム Advance／Emerg 10
【ナノ】
第一原理計算ソフトウェア Advance／PHASE 11
ナノ材料解析統合 GUI Advance／NanoLabo 12
ニューラルネットワーク分子動力学システム Advance／NeuralMD 13
【半導体】
3 次元 TCAD システム Advance／TCAD 14
【電磁界】
電磁波解析ソフトウェア Advance／ParalleIWave 15
【熱流体】
過酷事故時の原子炉格納容器•原子炉建屋の熱流動解析コード BAROC 16
【機械学習•深層学習】
深層学習用ツール Advance／iMacle 17
【品質工学】
品質工学ツール Advance／JIANT 18
【広告】

はじめに
計算科学技術は科学技術，産業技術の基盤技術ですが，2000年当時，わが国の計算科学技術用の産業応用ソフトウェアは欧米のソフトウェアにほぼ独占されている状況にありました。この状況を打破すべく，計算科学技術用の産業応用ソフトウェアの研究開発から実用化までを目指す，文部科学省 IT プログラム「戦略的基盤ソフトウェアの開発プロジェクト」が実施されました。アドバン スソフト株式会社は，東京大学生産技術研究所とともにこのプロジェクトの参加し，ソフトウェア開発の中核を担うとともに，開発されたソフトウェアの実用化，事業化することを目的として，設立されました。

アドバンスソフト株式会社が，20年間に開発し販売する，産業応用ソフトウェアは 20 本近くにな ります。本カタログはこれらのソフトウェアを紹介するものです。

なお，アドバンスソフト株式会社はこれらのソフトウェアを活用した解析サービス，ソフトウェア開発サービス，セミナー，コンサルティングも行っております。

〔問い合わせ先】アドバンスソフト株式会社 営業部
〒101－0062 東京都千代田区神田駿河台四丁目 3 番地 新お茶の水ビルディング 17 階西 TEL：03－6826－3971 FAX：03－5283－6580 URL：http：／／www．advancesoft．jp／ E－mail：office＠advancesoft．jp

国家プロジェクトとアドバンスソフトの設立

研究開発成果の事業化

このプロジェクトの目的は
（1）複雑•大規模な世界水準の戦略的基盤ノフトウェアを開発し公開する
（2）戦略ノフトを開発できるトッブレベルの人材を世界最先端のソフトウェア開発を通じて育成する
（3）戦略的基盤ノフトウェア開発の大学と企業の連携による研究拠点の構築をする （4）アドバンスンフトによる開発したソフトウェアの事業化と持続的な改良をする

文部科学省はわが国の計算科学技術の振興目的として戦略的基盤ソフ トウェア開発プロジェクトと革新的シ ミュレーション・ソフトウェア開発プロ ジェクトを2002年～2007年の6年間実施しました。このプロジェクトは，総額約70億円のわが国最大のソフト ウェア開発プロジェクトであり，東京大学生産技術研究所を中核とした「学」と「産」のアドバンスソフト（株）の強力な産学官連携により推進されま した。

アドバンスソフト（株）はこのプロ ジェクトを推進し，世界最高水準の ソフトウェアを開発するとともに，そ の成果を事業化することを目的とし て設立されました。

プログラム名	［流体］流体解析ソフトウェア Advance／FrontFlow／red
開発者	アドバンスソフト株式会社と東京大学生産技術研究所等が 文部科学省戦略的基盤ソフトウェア開発プロジェクトで開発
ソフトウェアの概要	Advance／FrontFlow／red（AFFr）は文部科学省の戦略的基盤ソフトウェア開発プロジ エクトで開発されたプログラムをベースに，アドバンスソフト株式会社が高速性やロバ スト性，機能追加や使い勝手向上などの改良を加えた純国産の汎用流体解析ソフトウェ アです。 Large Eddy Simulation（LES）という非定常乱流を精度良く解析する手法をベースと し乱流場の大規模解析を主なターゲットとしていますが，Reynoldds Averaged Navier－Stokes（RANS）などの定常流を解析する乱流モデルも備わっています。乱流解析をベースとし，流れによる伝熱，燃焼•化学反応，自由表面による混相流，パーセル粒子を含んだシミュレーションが可能です。また，ファン・タービン解析のような回転系の解析にも必要な機能が備えられています。既存機能では対応できない問題に対し て，開発者によるカスタマイズ対応も行っております。また AFFrを利用した解析サー ビスや技術サポートをご提供しております。 当初から計算資源を要する LES 解析をメインターゲットとしていたため，1本のライ センスで計算実行時並列数に対する制限がなく高コストパフォーマンスなソフトウェ アです。
	1．蒸発過程を含む摫拌解析右の図は増拌機の中で空気に触れながら高粘度含水物（汚泥）が烝発する過程を再現した解析事例です。 AFFr では自由表面モデルによる気液混相流の扱い が可能で，空気と高粘度含水物の間の自由表面が解 かれています。更に烝発過程による含水率の変化や汚泥の粘度の変化も考虜されており，擋搂機により空気に触れながら汚泥乾燥が促進され，流動の様子 が変化していく過程が再現されています。 2．プール火炎 石油タンク火炎など可燃性液体の液面燃焼はプール火炎と呼ばれます。右の図は底面にあるプロパンが一様に烝発していく中で酸素と化学反応を起こして発生する火炎 の振る舞いを再現した解析事例です。化学反応は総括反応 モデルによって扱われています。 AFFr では総括反応モデルに加え，素反応モデル，渦消散モデル等の化学反応モデルに加え，Flamelet モデルな どの燃焼モデル，パーセル粒子を用いた液滴燃料や微粉炭 の燃焼も扱うことができ，対象や解析のレベルに応じて使 い分けることができます。また熱の発生に伴った輻射によ
	3．CVDプロセス CVDは化学蒸着という薄膜生成法の一種で，基板や基材 が置かれた容器内に原料のガスとキャリアガスを供給し，熱などを与えて化学反応させることで薄膜させる方法で す。 AFFr には表面反応に特化したモデルが備わっており，右の図はCVDプロセスの解析事例として，SiF4（四フッ化 ケイ素）とNH3（アンモ二ア）のガスを吹き付けて，基板表面上に Si とNが沈着する過程を再現しています。 4．ターボファン解析 AFFr のスライディングメッシュ機能によりターボ機器，擋拌機，船体スクリューなどの回転系を扱うこ とができます。 右の図ではターボファンの解析事例としてファン の回転により引き起こされる送風を再現しています。 AFFrにはLighthill アナロジによる分離解法を利用し て乱流場による流体音源を評価する機能があり，流体解析により再現された乱流による送風機内の騒音が解析されました。
参考文献	技術情報誌 アドバンスシミユレーション Vol． 28 （2020．9），Vol． 17 （2013．12）他

プログラム名	
開発者	アドバンスソフト株式会社
ソフトウェアの概要	熱交換器や焼入れ熱処理等の沸騰凝縮現象は極めて複雑なため，その気液二相流状態や伝熱特性をシミュレーションで予測することがほとんどできないのが現状でした。 Advance／FrontFlow／MPは相変化を伴う気液二相流計算の安定性を向上させ，さらに，核沸騰，遷移沸騰，膜沸騰などの実際の沸騰現象に対応した沸騰疑縮の壁面熱伝達モデ ルを開発したことにより，機器の設計や開発に活用できる実用しベルの気液二相流の解析ソフトウェアとして提供するものです。
ソフトウェアの機能	1．相変化（沸騰，蒸発，凝縮） - 熱交換器 - 蒸発器 - 焼入れ熱処理（複数の沸騰曲線， バルク温度，バルク速度を使用） －過熱蒸気の凝縮 2．気泡流 - 気泡塔 - 反応タンク - 気泡群個別運動と相互作用（気泡合体） 3．噴霧流 －多分岐管の泠媒流の分配 4．自由表面 －スロッシング - 気液分離 - 液滴挙動（表面張力を考慮） - 塗布（表面張力と接触角を考慮） 5．固体凝集 －製鉄プロセス －ジャーテスター 6．溶接 $(*)$ －レーザービームや電子ビームによる金属 の溶融•蒸発•凝固（表面張力を考慮） 7．高濃度二相流 $(*)$ - 固気流動層 - 固液流動層 （＊）現在は専用バージョンで使用可能 図1 プール沸騰曲線試験解析 図2 多分岐管の泠媒流の分配解析 図3 溶接解析
参考文献	技術情報誌 アドバンスシミュレーションVol． 28 （2020．9），Vol． 23 （2016．12）他

プログラム名	【䇾路系】管路䋇流体過渡解析ソフトウェア Advance／FrontNet／「
開発者	アドバンスソフト株式会社
ソフトウェアの概要	流体の管路系過渡解析ソフトウェアとしてアドバンスソフトがご提供するFrontNetシ リーズのうち，圧縮性を考慮したガスの熱流動解析を対象としたソフトウェアが Advance／FrontNet／「です。 専用 GUI によって管路系の分岐•合流や流体機器を自由に配置でき，計算設定誘導画面により，ユーザーの入カミス防止と負担軽減を実現しています。
ソフトウェアの機能	流体の基礎方程式を簡略化せず解いているため圧力波伝播を高い精度で再現できるこ とが特長です。 圧力波伝播解析や多成分ガスモデルによる化学種の濃度解析ができます。流体物性は NIST 提供の REFPROP をベースとしているため，ガスや液体，超臨界流体などの単相 の実流体物性を取り扱うことができます。Ver3．0 から陰解法が導入され，大規模モデ儿解析や液体解析の時間短縮が可能となりました。伝熱モデルでは構造物との熱伝達，構造物内の熱伝導を考慮することができます。 管路系設定画面 温度コンター図 適用対象：火力，原子力等の発電プラント，都市ガス管路網，ロケットエンジン，原子炉炉心ガス冷却系，ガスタービン，熱量調整系，換気ダクト系，圧縮機，燃焼器，タービン，ファン，ブロワ，熱交換器 等 適用現象：バルブ遮断，ブロワトリップ，漏洩，ガスパージ，臨界流，圧力伝播，熱量変化，起動•停止，圧力脈動•共振，制御弁ハンチング，熱流動バランス 等
	検討例：緊急遮断弁閉時間検討，バッファタンク余裕度検討，ガスタンク設置個所検討，制御系 PID 検討，圧力脈動減哀時間検討，サバイバル時間検討，システ ム起動時の最大圧力検討，ガストレース 等
参考文献	技術情報誌アドバンスシミュレーション Vol． 29 （2022．4），Vol． 24 （2017．7）他

［音㪯響］

Advance／FrontNoise／Ray

開発者	アドバンスソフト株式会社
ソフトウェアの概要 （Advance／FrontNoise）	Advance／FrontNoise は音源からの音の伝搬を計算します。環境騒音の評価や騒音低下を目指した機器設計に活用できます。 右の図はマフラーの解析例です。＂in＂の面にエンジンの排気音， ＂out＂の面に放射境界が設定されています。＂in＂と＂out＂の音圧 からマフラーの透過損失が評価できます。また，ParaView な ど高機能なオープンソースの可視化ソフトウェアを用いて，解析結果を3次元で可視化して分析できるため，機器の問題の改善や高性能化のために解析結果を活用できます。

1．大規模並列化
MPI による大規模並列計算が可能です。解析時間の大幅な短縮や大規模モデルの解析が可能です。

2．連成解析
流体解析ソフトウェアの解析結果（音圧，流速）を音源とした流体音響弱連成解析，構造解析ソフトウェアの固有値解析結果を利用した構造音響弱連成解析，本ソフトウ

ソフトウェアの機能
（Advance／FrontNoise）

ソフトウェアの概要
ソフance／FrontNoise／Ray）

建築や土木分野では，有限要素法や有限差分時間領域法では取り扱いが困難な巨大な空間を解析したい二ーズがあります。当社では幾何音響学に基づいた音響解析ソフトウェ ア Advance／FrontNoise／Ray を開発し，大規模空間などを対象とした音響シミュレー ションに関するサービスを提供しています。

Advance／FrontNoise／Ray はクラウド上でご提供しており，お手持ちの PC からすぐ にご利用可能です。音源の位置と大きさ等を入力として，評価する領域内の工ネルギー を求めることができます。
Advance／FrontNoise／Ray は幾何音響学に基づいて音線を計算します。計算負荷は比較的小さいため，クラウド上でサービスをご提供しており，お手元のPC にインストー ルすることなくご利用可能です。解析対象によって Advance／FrontNoise／Ray と Advance／FrontNoise を使い分けていただくことができます。

ソフトウェアの機能
（Advance／FrontNoise／Ray）

参考文献	技術情報訫

参考文献

プログラム名

開発者

月に河川汇濫シミュレーションシステム Advance／RiverFlow にリリースしました。 Advance／RiverFlow は全球スケールから詳細な地域の河川流量，浸水深などの計算が可能です。また，極値統計解析を用いることで洪水リスクとして，例えば 100 年に一度や 1000 年に一度の規模の河川氾濫における浸水深を評価することができます。河川氾濫モデルには，世界最先端の地球全域を対象にした河川氾濫モデル（全球•地表水動態モデル）『CaMa－Flood』を採用し，初心者にも利用しやすいように前処理 GUI と後処理 GUIを備えています。
主な機能は以下の通りです。機能詳細は製品パンフレットをご覧ください。
1．河川氾濫モデル『CaMa－Flood』を用いることで既存の 2 次元の河川池濫モデルよ り数万～数百万倍高速な洪水汇濫計算を実現します。

2．前処理 GUI である入カファイル設定支援ソフトウェアにより，GUI 操作にて解析条件を設定し，計算に必要な設定ファイルや実行支援スクリプトを作成することができ ます。

3．後処理可視化ツールとして，基本的な可視化（分布図•時系列図の作成）と保存（静止画•動画•時系列データなど）ができます。後処理 GUI は QGIS のプラグインと して提供されているため，QGIS の機能を全て利用することができます。

4．サポートしてユーザートレーニング（内容により有償），E－mailによる問い合わせ，保守サポート（バージョンアップに伴う最新バーションの使用権）を提供いたします。

5．河川汇濫モデル『CaMa－Flood』のサポート OS は Linux に加えて Windows での動作が可能です。

2020年7月豪雨に伴う球磨川の汇濫 （4日10時時点）

2019年10月の台風19号に伴う千曲川の汇濫（13日6時時点）

プログラム名	$\begin{aligned} & \text { 【ナノ】 } \\ & \text { ニューラルネットワーク分子動カ学システム Advance/NeuralMD } \end{aligned}$
開発者	アドバンスソフト株式会社
ソフトウェアの概要	Neural Network Potential に基づいた分子動力学計算のソフトウエアです。Quantum ESPRESSO にて出力された第一原理計算の結果を教師データとして，分子力場を作成 します。この力場を利用して，LAMMPSにて分子動力学計算を実行します。 特徴 - 第一原理計算よりも高速，かつ，既存の分子動力学計算よりも高精度 - Advance／NanoLabo と連携してGUI 上で，力場作成から運用までを実現 - 常に最新のアルゴリズムを取り入れており，先端研究に取り組む研究者を支援
ソフトウェアの機能	1．GUI 画面から簡単に Neural Network 力場を生成可能多数の構造を管理するグランドプロジエクト機能を使用して，ユーザーが教師データを作成することが出来ます。作成した教師データにて Neural Network 力場の作成およ び分子動力学計算の運用が可能です。 2．独自理論 $\triangle-N N P$ 法当社が独自に開発した $\Delta-N N P$ 法に より教師データ数を低減して，効率的に高精度な力場作成を実現します。 Δ－NNP 法による $\mathrm{Li}_{10} \mathrm{GeP}_{2} \mathrm{~S}_{12}$ のイオン伝導率 ［1］A．Marcolongo，ea al．，https：／／arxiv．org／abs／1910．10090 ［2］菅野了次，Electrochemistry，85（9），591－596（2017） 3．Facebook 社の開発した Graph Neural Network 力場 Facebook 社の開発した Graph Neural Network 力場である，Open Catalyst 2020 ＜https：／／opencatalystproject．org＞が利用可能です。触媒系を中心に種々の系に適用可能な汎用力場です。世界最先端の Graph Neural Network の理論が分子力場法に応用 されています。 4．自己学習ハイブリッドモンテカルロ法自己学習ハイブリッドモンテカルロ法を使用することで，Neural Network力場を自動生成することが可能です。ユーザーの練度や恣意性に依らず，画面上のボタンを押すだけで簡単に力場が作成できる非常に便利な機能です。さらに，当該機能を応用して Neural Network 力場の データベースを作成中です（右図）。
参考文献	技術情報誌 アドバンスシミュレーション Vol． 29 （2022．4）

プログラム名

開発者
ソフトウェアの概要

フトウェアの概要

\square

3 次元 TCAD システム Advance／TCAD
 アドバンスソフト株式会社と明治大学畐澤一隆教授が

科学技術振興機構（JST）研究成果展開事業 研究成果最適展開支援プログラム （A－STEP）「半導体デバイス3次元 TCAD システム」で開発
超微細半導体デバイス，パワーデバイス，光センサーなど各種半導体デバイスのプロセ スおよびデバイスシミュレーションの機能を備えています。複数デバイスの一体解析や デバイス・外部回路一体解析等の高度な機能と使いやすい GUI を備えた 3 次元 TCAD システムです。

物性値や計算パラメータはユーザーにより任意の値が設定可能であり，研究から製造ま での幅広い用途にご使用いただけます。また独自に開発した計算手法や分散メモリ型並列計算機能の採用などにより高速な大規模 3 次元シミュレーションが可能です。
プロセスシミユレータ ：半導体製造プロセスのシミユレーションが可能です。

製造ブロセス	解析機能
デポ・エッチ	非構造四面体格子を採用し，複雑な構造を高精度にシミユレ ート可能。幾何学的な処理による高速な形状生成が可能。
イオン注入	結晶材料（立方晶，六方晶）とアモルフアス材料の両方に対応した3次元モンテカルロ法によるイオン注入シミュレー ションが可能。
拡散	非平衡反応拡散モデルと平衡拡散モデルを搭載。

デバイスシミュレータ ：デバイスの電気特性をシミュレーションします。
CMOS リングオシレータ解析
モータ制御デバイス解析
SRAM ソフトエラー解析

－誘電率，電子親和力，質量モデル，バンドギャップモデルなど，任意の物性の半導体，絶縁体，金属を設定可能（※典型的な物質はデフォルト値を提供）

- 電流連続方程式＋ポアソン方程式による定常および過渡解析機能
- 不純物モデルと界面準位モデルによる電荷および再結合を考慮
- 量子効果（Feynman の実効ポテンシャル，直接トンネリング）補正機能
- ショットキー電極，ヘテロ接合にも対応
- 移動度モデルとしてMOS 反転層モデル，折れ線近似，指数飽和型，定数型などを使用可能
－生成•再結合モデルとして SRH，Auger，直接再結合，深い準位による再結合，二準位間再結合，GIDL，衝突電離などを使用可能
技術情報誌 アドバンスシミュレーション Vol． 26 （2018．7），Vol． 21 （2015．9）

プログラム名	【電磁界】 電磁波解析ソフトウェア Advance／ParallelWave
開発者	アドバンスソフト株式会社
ソフトウェアの概要	Advance／ParallelWave はアドバンスソフトが自社開発している電磁波解析ソフト ウェアです［1］。マクスウェル方程式を finite－difference time－domain（FDTD）法 で 3 次元的に解いて電磁波の挙動を解析します。電波から光波の領域まで幅広い分野に対応する機能を持っています。 当社の半導体シミュレータ Advance／TCAD と連携することができ，イメージセン サーや太陽電池などの受光デバイスを解析できます。 NEC 製ベクトル型スパコンSX－Aurora TSUBASA と Advance／ParalleIWave のセ ットモデルの販売形態もあります。 ［1］並木武文，松原聖，大規模電磁波解析ソフトウェア Advance／ParallelWave の開発，＂アドバンスシミュレーション，Vol．23，p． 115 （2016）
ソフトウェアの機能	1．高精度な解析 電波•光の基礎方程式である Maxwell 方程式を解くため，精度の高い解析ができます。 2．並列計算 MPI 並列を実装しているので，大規模モデルの解析にも対応することができます。 3．GUI 専用の GUI により，境界条件や波源の設定が容易に行えます。3D－CAD データをインポートで き，複雑な形状のモデルが作成できます。 4．アンテナ評価パラメータの出力機能 Sパラメータ，放射パターン，アンテナ利得，任意面での電磁界分布，を出力できます。 5．光電変換による光電流算出当社の半導体デバイスシミュレータと連携して光電変換による光電流を計算できます。 6．SX－Aurora TSUBASA を用いた高速計算 チューニングを行いNEC製ベクトル型スパコン での高速計算を可能にしました。 7．動作環境 64－bit Windows／64－bit Linux
参考文献	技術情報誌 アドバンスシミュレーションVol． 25 （2018．1），Vol． 23 （2016．12）

プログラム名	$\begin{aligned} & \text { (熱流体) } \\ & \text { 過酷事故時の原子炉格納容器•原子炉建屋の㙷流動解析コード BAROC } \end{aligned}$
開発者	アドバンスソフト株式会社
ソフトウェアの概要	原子力発電所の事故の推移を把握するためには数値シミュレーションが必要となり，そ のためのシミュレータ（解析コード）が長年にわたり国内外で開発•改良されてきまし た。通常の運転系統を基本とした熱流動や核反応のシミュレーション技術は確立されて います。しかし，福島第一原子力発電所の事故において，既存の解析コードでは詳細に扱つていなかった格納容器や原子炉建屋における水素や水蒸気を含む 3 次元熱流動を詳しく模擬することが重要となります。 過酷事故の推移把握には，建物を対象に数日分の解析が必要となります。汎用の CFD コードでは，計算時間がかかることが難点です。また，水素•水蒸気やセシウムの空間分布を評価するために欠かせない正確性（質量収支の保存）にも難点がありました。こ うした点を解決するために新たに開発したのが 3 次元圧縮性流体解析コード BAROC です。
ソフトウェアの機能	物理法則に則つて計算しつつ実用に耐えうる計算時間で現象を解析します。 高速化のために独自開発した数値計算法（ECBA 法）を適用できます。広く知られている CFD 手法（陽解法）では，形状表現のために空間分割（メッシュ）を細かくすると時間刻み幅が大きくできず，解析時間が長大になります。BAROCでは陰解法を適用することで，実規模の形状モデルを対象とした試作モデル（下図）において一般的な半陰解法の1 千倍，陽解法の約 2 万倍以上の時間刻み幅でも安定した過渡計算が可能となっています。 従来からの SIMPLE 法を用いた CFD 手法では質量保存式を解いたあとで状態方程式 による流体密度の更新を行うために長時間の解析では質量収支の誤差が拡大しますが， BAROC で採用したECBA法では圧力•流速・エネルギーを強く結びつけて解くことで この問題を解決しています。 主な機能は次の通りです。 ○基礎方程式：多成分系カスに対する 3 次元圧縮性流体に対する質量保存式，運動量保存式，エネルギー保存式および成分ガス濃度に対する質量保存式 O状態方程式：完全理想気体，P－R 式，SRK 式，NASA 物性 DB の 24 種の化学種物性 ○放射性物質（FP）：エアロゾル粒子に対するパッシブスカラーの質量保存式，拡散沈着 モデル O乱流モデル：$k-\varepsilon$ モデル O行列計算法：前処理付き BiCGStab 法／BiCGStabl 法 ○計算格子：構造格子，スタッガード格子 ○対流項の差分スキーム：一次精度風上差分法， 2 次， 3 次精度の制限関数 minmod 付き TVD 法 OSTL ファイルからの形状モデル取り込み可能 過酷事故時のセシウム分布解析例 過酷事故時の 原子炉建屋内水素分布解析例
参考文献	技術情報誌 アドバンスシミュレーション Vol． 29 （2022．4），Vol． 19 （2014．10）

プロゲラム名	［譏械学習•深層学習】深層学翌用ツール Advance／iMacle
開発者	アドバンスソフト株式会社
ソフトウェアの概要	－ニューラルネットワークによる深層学習に特化 Advance／iMacle は，機械学習のうち，ニューラルネットワークによる深層学習に特化 したツール（ライブラリ群）です。ライブラリ群から必要な機能を組み込んで，独自ア プリケーションを作成する場合での利用が期待されます。 －お客さまのニーズに応じたカスタマイズが可能 当社で版権を持つソフトウェアであるため，お客さまの二ーズに応じたカスタマイズが 可能です。GPU や並列計算機を使った高速化や，必要に応じてソースプログラムを公 開することが可能です。他のAIツールと組み合わせた使用も可能です。
ソフトウェアの機能	Advance／iMacle は，ライブラリ群であり，お客さまに必要な機能を選択し，新しい機能を組み合わせることで，深層学習用ツールを構築します。必要な機能がない場合は，文献等から最新のアルゴリズムを実装することも可能です。 Python 言語の基本的な機能のみを用いて開発しており，マルチプラットフォーム対応 （Win，Linux，Mac）です。 サービス・メニュー - 深層学習用ツール Advance／iMacle を適用した解析 - 深層学習用ツール Advance／iMacle のカスタマイズ - オープンソースの機械学習•深層学習ツールを利用した解析 - 機械学習•深層学習を利用した観測•実験データの解析 - 当社の科学技術計算に関する様々なソリユーションとの連携 - シミュレーションを利用した学習データの大量作成 - GPU や並列計算機を利用したツールの高速化 アドバンスソフトでは，当社独自の深層学習用ツール Advance／iMacle（アイマーク ル）を開発し，さまざまなデータに対し，人工知能（AI）技術を駆使して分析／知識化 を行い，そこで創出した情報／価値によって，問題の解決を図ることを目的としたソリ ユーションの提供を行っています。 当社が長年培ってきたナノ・バイオ系や CAE のシミュレーション技術，実験技術等と組み合わせることで，データ認識•分類性能の更なる高精度化も期待されます。AI 技術を利用したデータ解析やアプリケーション開発について，受託開発やコンサルティン グ，アウトソーシングをご検討中のお客さまは，ぜひともご相談ください。
参考文献	技術情報誌 アドバンスシミュレーション Vol． 28 （2020．9），Vol． 27 （2019．12）

アドバンスソフト株式会社が「2020年度 蔵前ベンチャー賞」を受賞しました。2020年11月25日，蔵前工業会による授与式•記念講演会が行われました。

「蔵前ベンチャー賞」は，一般社団法人蔵前工業会（東京工業大学 OB 会）が主催，東京工業大学が共催し，2007年に設置された。東京工業大学出身者が経営に携わる「高い経営理念を持つて，新しい技術，サービス，製品， ビジネスモデル等を事業化することにより，新しい市場や雇用を創造した優れたべンチャー」を表彰するという ものです。

アドバンスソフト株式会社は2002年の創業以来，計算科学分野におけるシミュレーションソフトの国産技術開発にチャレンジし，大学で関連分野を専攻した研究者に雇用することにより活躍する場を提供され，デファクト スタンダードとなっている海外製ソフトウェアのマーケットの中で国産のソフトウェアを用いた事業を展開し， その事業規模を拡大し，長期間に渡り安定した収益を確保していることが評価されました。

2020年

蔵前ベンチャー賞

アドバンスンフト株式会社代表車維往镸松原 聖 殿執行役員三橋利玄殿
貴社はシミュレーションンフトの自社開発力を有する計算科学の専業会社を創業 多種罗様な顧客課題を解決し日本の産業競争力強化に貢献しました新時代を拓く革新的な企業の模範を示す ものとしてここに蔵前ベンチャー賞を授与しこれを㗬します

令和2年11月25日

一般社団法人藏前工業会理韦長井戸清人

アドハンスソフトの AIサービス

アドバンスソフト株式会社では，当社独自の深層学習ツール Advance／iMacleの開発や，長年にわたるシミユレーション。 ソフトウェアの開発•解析で培った実績・ノウハウを基に，機械学習や深層学習などのAI技術を用いた業務の効率化や，問題解決のお手伝いをいたします。

主なサービス内容

項目	内鍳
受昛開発	お客さまの課題に対して最適なモテルを検討•提案し，プログラム開発を実施します。
受乱解析	お客さまの課題に対して最適な解析方法を調査•提案し，解析を実施します。
浢樈構筑	お客さまの課題に対して最適な計算機弶境を調査•提案し，環境栜築を実施します。
ベンチマーク	機械学習•深層学習の閏連ツールヤライブラリ等のベンチマーク調査を行います。
㻅文調査	綸文等を対象に，最新のモテルやトレンドを調査します。
コンサルティンク	機械学習や深層字習なと，AI 技術に関する幅広いご相談を承ります。

本サービスの活用イメージ

－論文等の調查に基いた開発

論文等の調査を行い，お客さまの ニースに合ったモテルを提穼し， プログラム開発を実施します。

－AI業務の環境構築

お客さまの環境や用途に最適な ツールの検討やべンチマーク調査 を行い，環境構筑を実施します。

－受託解析

お客さまの課題に対して最適な解析方法を調査•検討し，解析を実施します。

アドバンスソフトの

原子力安全解析サービス
槷流動解析のサービスメニユー

アドバンスソフトでは，原子力安全に関する社会的ニーズ に応えるため，熱流動解析に継続的に取り組んでいます。

1．門存コ一ドによる解析

既存の晈水力解析コードによる解析作業をお引き受けい たします。

2．当社コ一ド解析支援

アドバンスソフトが開発したパッケージソフトを用いた解析作業を支援いたします。

3．デー夕整備

解析コードの入力データのパージョン変換，モデル改良等をお引き受けいたします。

4．コード開発•改良

新たなコードの開発や既存コードの譏韵改良をいたします。

5．お客さまのコードの保守•改良

コート開発•改良の繶鍂を活かして，お客さま斥有の解析コード のケージヨンアップや言謤換といった保守怍業を承ります。

過酷事故時の原子炉格納容器。

原子炉建屋の褬流動解析コード BAROC

主な機能

○数値解法（陰解法）：圧力•流速・エネルギーが強 く結びついた解法（ECBA法）またはSIMPLEC法 （MCBA法）
○基䃏方程式：多成分系ガスに対する3次元圧縮性流体に対する質量保存式，運動量保存式，エネルギ一保存式および成分ガス濃度に対する質量保存式 O状態方程式：完全理想気体，P－R式，SRK式，NASA物性DBの24種の化学種物性
O放射性物質（FP）：エアロソル粒子に対するパッシ ブスカラーの質量保存式，拡散沈着モデル
O乱流モデル：$k-\varepsilon$ モデル
O行列計算法 ：前処理付きBiCGStab法／BiCGStabl法 ○対流項の差分スキーム：一次精度風上差分法， 2次，3次精度の制限関数minmod付きTVD法 OSTLファイルからの形状モデル取り込み可能 ○解析事例 ：水素放出挙動解析，セシウム挙動解析

アドバンスソフト株式会社 営業部
〒101－0062 東京都干代田区神田駿河台四丁目3番地 新お茶の水ビルディング17階西
TEL：03－6826－3971 FAX：03－5283－6580
URL：http：／／www．advancesoft．jp／E－mail：office＠advancesoft．jp 七お問い合わせはこちらへ

王縮性流体絴析ソルパー Intrance／FOCIS－I

Advance／FOCUS－iの栈要

Advance／FOCUS－iは非棈造格子に対応した圧棭性流体解析ソノノイーです。
退音䘮や超音迹の流れの解析に適して おり，高い並列化効率で計算をすることが できます。また，DDT（蚛攸移）たモデル化したG方程式を実装しており，詳細反応

モデルよりも比較的低い計算コストて燃境

Advance／FOCUS－iの性微
 の解析を高楴度かつ高速边理
－非排造格子による任意形状に対店

- MPI並列による高㗹計算
- G方程式による低コストの陶然，炽营解析
- CHEMKIN（2）形式の入力ファイルからNASA多項式の係数を自諈取得
＊CHEMKINは米国むよびその他の国におけるReaction

Advance／TCAD

2011～2015；科学技條浱興機搆研究成果最適展開支墒プログラム（A－STEP）本格研究開発ステージ 实用化挑戰タイブで開発

超微細半導体デバイスからパワーデバイスまでの

解析において，デバイスシミュレーション， プロセスシミユレーションの基本機能はもちろん，光•電磁波との連成解析，複数デバイスや外部回路との一括解析，熱解析 等のデバイス開発で必要とされる各種機能を備えています。アドバンスソフトがソースコードレベルから自社開発しており，お客さまのご要望に臨機応変に対応できる国産の3次元TCADシステムです。

独自に開発した高速で安定的な計算手法や分散メ モリ型並列計算機能の採用などにより高速でロバ ストな大規模 3 次元ブロセス・デバイス計算が可能です。

各種の物性値や計算バラメータはユーザーにより任意の値が設定可能です。研究から製造までの幅広い用途にご使用いただけます。

超微細デバイス，パワーデバイスのそれぞれの解析に特有な解析機能を備えています。

3次元ブロセスシミユレータ（イオン注入）

特徴

- 高速3次元解析
- 頑健（ロバスト）な計算手法
- 幅広いデバイスに対応
- 大規模解析

5段CMOSリングオシレータの過渡解析

解析事例：モータ制御デバイス解析

技術情報誌

$$
\begin{aligned}
& \text { のバックナンパーをッチこでダウンロード } \\
& \text { 「シミユレーション・フォーラム会員」の登録が必要です。 } \\
& \text { 己登録戴いた方には, 別途, イベシトのご案内なと敬社からの } \\
& \text { 知らせを送らせていただく場合がございます。 }
\end{aligned}
$$

FUilitsu Fujitsu Computing as a Service （CaaS）

最先端のコンピューティング技術を誰もか容易に利用できるクラウドサービス

「CaaS」は，世の中の急増する計算需要と複雑化する課題に対して，富士通の高度なコンビューティング技術をパブリックク ラウド上て提供し，お客様の新たな価値創出を目指すサービスです。従来の学術分野に留まらず幅広い業界において，研究開発やDX実践，企業競争力強化を支援します。

特辰	（以下HPC）や量子技術に苦想を得たコンビューティング技術であるDigital Annealer（以下DA）をオンデマンドに利用できるサー ビスてす，蚌社の多様な謤題に対して，褚数のアブローチで柔軟に対応したします。

Fujitsu Computing as a Service（CaaS）

－構筑•運用が不要！圧倒的に楽！

－多様な計算リリースとマルチクラウトト環境での安心安全な解析環境の実現

－富岳の研究成果をビジネス用途で御利用可能

－業務アブリと簡単に連携できる

\qquad

富士通株式会社

Uvance Core Technology本部 CaaS Strategy Office
お問合せ先 e－Mail ：f－caas－cc＠dl．jp．fujitsu．com

Advance －VHirioca ver 1．0

～Advance／V－HINOCA とは～

内閣府主導のプロジェクト「戦略的イノベーション創造プログラム（SIP）」（2014～2018 年度）のテーマ の1つ「革新的燃焼技術」において開発された，3次元エンジン燃焼解析ソフトウェア HINOCA を元に， SX－Aurora TSUBASA を用いた高速計算を可能にするためにベクトル化を適用し，単成分流動計算用に開発 されたソフトウェアです。

当社では，JAXA 様より権利の許諾をいただき，Advance／V－HINOCA として事業展開いたします。複雑な形状や移動物を伴う解析を，形状に適合する格子作成の手間なく計算する事が可能な解析システムを提供しま す。また，お客さま二ーズに合わせた改良を行います。

特長

［1］SX－Aurora TSUBASA を用いる事で高速計算が可能なベクトル化されたソルバー
［2］STL 形状データを準備するだけで利用者が計算格子を作成する事なく計算が可能
［3］エンジンのモータリング計算など，移動物体を含む計算が可能
［4］AMR（Adaptive Mesh Refinement）機能により指定部分のみ高精度計算が可能
適用分野とアプリケーション

項目	内容
自動車分野	エンジン内部の流れの計算（タンブル比，流量係数の評価など） 車内外の流れの計算
その他	複雑形状の内部流計算など

動作環境

OS	Red Hat Enterprise Linux
CPU	SX－Aurora TSUBASA 各モデルもしくは Vector Engine 搭載サーバ
並列計算	OpenMP，MPI を用いたハイブリッド並列

STL 形状データ 自動抽出された計算格子

吸気時の流れ

排気時の流れ

SX－Aurora TSUBASA

手のひらサイズのPCleスロット対応カードで，業務現場の開発スピードが飛躍的に向上。

単ーコアあたり世界トッブクラスの演算性能を誇る，
ベクトルプロセッサを搭輚したPCI－Expressカード型ベクトルエンジンです。
大量のデータ解析や人口知能（AI）の開発，流通業の需要予測やセキュリティ分野など，
中小規模のR\＆Dにおけるエッジ領域て新たなビジネス創出をサポートします。

SX－Aurora TSUBASA Vector Engineの特長

- 世界で唯一，NECだけか提供するペクトル型プロセッサを搭㦸。
- 世界トップクラスの単ーコア性能／単一コアメモリ帯域を有するコア8個を内蔵し， 1枚で2．45テラフロップスの演算性能と1．53テラバイト／秒のメモリ带域を実現。
- C／C＋＋／Fortran／Pythonで開発でき，ソースコードの書き換えなど特別な前処理は不要。
- コンパイラの自動ベクトル化•自動並列化機能で，使いやすさと高性能を両立。
- Linux OSのオープン環境に対応し，既存のライブラリやツール資産をそのまま活用可能。

アドバンスソフト株式会社は「NEC 共創コミュニティ for SX－Aurora TSUBASA」の パートナー企業であり，下記ソフトウェアに対していち早くSX－Aurora TSUBASAでの高速化に対応頂きました。
－Advance／FrontFlow／red
－Advance／FOCUS－i
－Advance／ParallelWave
－Advance／V－HINOCA
性能比較

お問い合わせ先
NEC SX－Aurora TSUBASA担当
E－mail：info＠hpc．jp．nec．com
SX－Aurora TSUBASA情報サイト https：／／jpn．nec．com／hpc／sxauroratsubasa／index．html

l 7 》技術者（新卒および中途採用）募集

下記連絡先へ電話，メールにてお問い合わせください。
アドバンスソフト株式会社 総務部 人事課 担当：小池太一
TEL：03－6826－3970 E－mail ：recruit＠advancesoft．jp
〒101－0062 東京都千代田区神田駿河台四丁目 3 番地 新お茶の水ビルディング 17 階西
【修士修了の方，博士号取得者，中途の方も随時募集しています】
技術職

募 集 職 種	数値解析，ソフトウェア開発技術者
雇用 形 態	正社員

非常勤専門職も募集中

募集職 種	数値解析，ソフトウェア開発技術者
応募資 格	- 理学博士，工学博士歓迎 - 科学技術計算，ソフトウェア開発の経験者 - 大学卒以上，専門的経験を持った希望者は年齢問わず - 日本語での業務遂行に支障のない方
待 遇	- 勤務時間，在宅勤務，応相談 - 時給 3，000円～5，000円 - 休日•休暇：土日祝，年末年始，有給休暇

技術営業職

募集職 種	営業担当者
雇用形 態	正社員
応募資格	大学卒以上
待 遇	- 給与：当社基準に基づき決定（賞与 年 1 回，昇給 年 1 回） - 勤務時間： 9 時 00 分 ~ 17 時 30 分，休想時間 12 時 00 分～ 13 時 00 分 - 待遇•福利厚生：社会保険完備，交通費支給 - 休日•休暇：土日祝，年末年始，有給休暇

[^0]: 「問い合わせ先】アドバンスソフト株式会社 営業部
 〒101－0062 東京都千代田区神田駿河台四丁目3番地 新お茶の水ビルディング 17 階西
 TEL：03－6826－3971 E－mail：office＠advancesoft．jp

