多成分系混合物性モデルと実在流体への適用性検討

秋村 友香* 大須賀 直子* 三橋 利玄*

Multicomponent Mixture Properties Model and Application to Real Fluid

Yuka Akimura^{*}, Naoko Ohsuka^{*} and Toshiharu Mitsuhashi^{*}

本誌前報の「状態方程式と輸送係数式の実流体物性との比較」において、気体の状態方程式として良 く知られる一般的な理想気体の式をはじめ、van der Waalsの式、Peng Robinsonの式[1]および物性計算プ ログラム REFPROP[2]による実在流体の物性値の比較を行い、低圧ではそれぞれの物性値が概ね一致し ていることを示した。一方、同じく本誌掲載のレポート「圧力伝播解析への数値解析モデルの適用性検 討」におけるバルブ閉鎖時の圧力伝播試験解析では、空気を単成分として扱った理想気体の式と REFPROPによる実在流体の物性値を用いた場合とで結果の差異が見られた。REFPROPによる実在流体 の物性値は近年広く利用されている Helmholtz 型関数の状態方程式に基づいていることから、混合物性 の Helmholtz 型関数の状態方程式を導入し、多成分系としての実在流体の物性計算に応用した。さらに、 バルブ閉鎖時の圧力伝播試験解析に適用し、得られた解析結果は試験結果との良い一致が見られ、 Helmholtz 型関数の状態方程式に基づいた混合物性計算の妥当性を確認した。

Key word: 多成分系、混合物性、実在流体、Helmholtz 型関数、状態方程式、REFPROP

1. はじめに

本誌前報の「状態方程式と輸送係数式の実流体 物性との比較」において、気体の状態方程式とし て良く知られる一般的な理想気体の式をはじめ、 van der Waals の式、Peng Robinson の式[1]および物 性計算プログラム REFPROP[2]による実在流体の 物性値の比較を行い、低圧ではそれぞれの物性値 が概ね一致していることを示した。一方、同じく 本誌掲載のレポート「圧力伝播解析への数値解析 モデルの適用性検討」におけるバルブ閉鎖時の圧 力伝播試験解析では、空気を単成分として扱った 理想気体の式と REFPROP による実在流体の物性 値を用いた場合とで結果差異が見られ、実在流体 の物性値を用いた方が試験結果との一致が良い ことを示した。REFPROP による実在流体の物性 値は、近年広く利用されている Helmholtz 型関数 の状態方程式に基づいている。Helmholtz 型関数

*アドバンスソフト株式会社 第3事業部 3rd Computational Science and Engineering Group, AdvanceSoft Corporation の状態方程式は無次元化 Helmholtz 自由エネルギ ーを用いて多項式で近似され、実測値を極めて高 精度に再現できることから、熱物性値の計算には 国際的にも広く利用されている。

そこで、多成分系の実在流体の物性計算にも応 用できるように、Helmholtz 型関数の状態方程式 に基づいた混合物性計算をガス管路系流体解析 ソフトウェア Advance/FrontNet/F に導入し、圧力 伝播試験解析を行って、妥当性を検討した。

本稿では、Helmholtz 型関数の状態方程式によ る物性計算の基礎理論、およびあらかじめ作成し た純物質流体の実在物性データを活用した実在 流体の現実的な混合物性計算方法を示し、圧力伝 播試験解析に適用して妥当性を検討した結果を 示す。

2. 実在流体の混合物性計算モデル

本章では、REFPROP[2]で採用されている GERG-2004[4]とその発展版である GERG-2008[5]、 および関連する文献[3][6]に基づいて実在流体の 混合物性計算モデルを説明する。

はじめに純物質流体の Helmholtz 自由エネルギ ーと物性計算式を説明し、次に混合流体の Helmholtz 自由エネルギーと物性計算式の説明と 空気を例とした具体的な物性計算式を説明する。

また、本章の最後で計算負荷の軽減のために、 REFPROP のプログラム関数を用いて得られた純 物質流体の物性データを用いた混合流体の物性 計算方法を紹介する。

2.1. 純物質流体の Helmholtz 自由エネルギー

純物質流体の Helmholtz 自由エネルギーa[J/mol] は次のように理想項(理想気体の Helmholtz 自由 エネルギー)と剰余項の線形結合として表される。 なお、 ϕ は無次元化 Helmholtz 自由エネルギーを 表す。

$$\frac{a(T,\rho)}{RT} = \phi(\tau,\delta) = \phi^0(\tau,\delta) + \phi^r(\tau,\delta)$$
(1)

ここで、肩添え字の $0 \ge r$ は、それぞれ理想項と 剰余項を示す。また、 δ は換算密度、 τ は換算温度 の逆数であり、次のように表される。

$$\delta = \rho / \rho_c$$

$$\tau = T_c / T$$
(2)

ここで、添え字 c は臨界点(critical point)を表す。

2.2. Helmholtz 自由エネルギーを使った純物質流 体の物性計算式

無次元化 Helmholtz 自由エネルギー用いた物性 の算出は次のような熱力学的関係式から求めら れる。

(1) 圧力(圧縮係数)

$$Z = \frac{p}{\rho RT} = 1 + \delta \left(\frac{\partial \phi^r}{\partial \delta}\right)_{\tau}$$
(3)

ここで、Z は圧縮係数、p は圧力、 ρ は密度、R は気体定数、Tは温度である。

(2)内部エネルギー

$$\frac{e}{RT} = \tau \left[\left(\frac{\partial \phi^{0}}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi^{r}}{\partial \tau} \right)_{\delta} \right]$$
(4)

ここで、eは内部エネルギーである。

$$(3) \pm \forall \beta n \forall \xi' - \frac{h}{RT} = \tau \left[\left(\frac{\partial \phi^0}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi^r}{\partial \tau} \right)_{\delta} \right] + \delta \left(\frac{\partial \phi^r}{\partial \delta} \right)_{\tau} + 1 \qquad (5)$$

$$\exists z \in \mathfrak{C}, \ h \exists \pm \forall \beta n \forall \xi' - \mathfrak{C} \Rightarrow \Im_{\delta}$$

$$(4) \pm \nu \vdash \Box \vdash^{\circ} - \frac{s}{R} = \tau \left[\left(\frac{\partial \phi^{0}}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi^{r}}{\partial \tau} \right)_{\delta} \right] - \phi^{0} - \phi^{r} \qquad (6)$$

$$\exists \exists \tau \vee \vdash \Box \vdash^{\circ} - \forall \forall \exists \delta_{\circ}$$

(5)定積比熱

$$\frac{C_{\nu}}{R} = -\tau^{2} \left[\left(\frac{\partial^{2} \phi^{0}}{\partial \tau^{2}} \right)_{\delta} + \left(\frac{\partial^{2} \phi^{r}}{\partial \tau^{2}} \right)_{\delta} \right]$$
ここで、 C_{ν} は定積比熱である。
(7)

(7)音速

$$acs = \frac{C_p}{C_v} \times \left[1 + 2\delta \left(\frac{\partial \phi^r}{\partial \delta} \right)_{\tau} + \delta^2 \left(\frac{\partial^2 \phi^r}{\partial \delta^2} \right)_{\tau} \right]$$
(9)

ここで、*acs*は音速である。

2.3. 混合流体の Helmholtz 自由エネルギー

混合流体の Helmholtz 自由エネルギー a_{mix} [J/mol] は純物質流体と同様に理想項と剰余項の線形結 合として表される。なお、 ϕ_{mix} は混合流体の無次 元化 Helmholtz 自由エネルギーを表す。また、 $\overline{X_i}$ は混合流体を構成する成分のモル分率のベクト ルを示している。

$$\frac{a_{mix}(T,\rho,X_i)}{RT} = \phi_{mix}(\tau,\delta,\overline{X_i})$$

$$= \phi_{mix}^0(\tau_i,\delta_i,X_i) + \phi_{mix}^r(\tau,\delta,\overline{X_i})$$
(10)

ここで、 δ は換算密度、 τ は換算温度の逆数であり、 次のように表される。

$$\delta = \frac{\rho}{\rho_r(\overline{X_i})}$$
(11)
$$\tau = \frac{T_r(\overline{X_i})}{T}$$

 $\rho_r(\overline{X_i}), T_r(\overline{X_i})$ は擬似臨界密度、擬似臨界密度 と呼ばれ、次のように表される。

$$\frac{1}{\rho_{r}(\overline{X}_{i})} = \sum_{i=1}^{n} X_{i}^{2} \frac{1}{\rho_{c,i}} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2X_{i}X_{j}\beta_{v,ij}\gamma_{v,ij} \frac{X_{i} + X_{j}}{\beta_{v,ij}^{2}X_{i} + X_{j}} \frac{1}{8} \left(\frac{1}{\rho_{c,i}^{1/3}} + \frac{1}{\rho_{c,j}^{1/3}}\right)^{3}$$
(12)

$$T_{r}(\overline{X_{i}}) = \sum_{i=1}^{n} X_{i}^{2} T_{c,i} +$$

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2X_{i} X_{j} \beta_{T,jj} \gamma_{T,jj} \frac{X_{i} + X_{j}}{\beta_{T,jj}^{2} X_{i} + X_{j}} \frac{1}{8} (T_{c,i} \cdot T_{c,j})^{1/2}$$
(13)

ここで、 $\rho_{c,i}$ 、 $T_{c,i}$ は臨界点の各成分の密度と温度 を示し、 $\beta_{v,ij}$ 、 $\gamma_{v,ij}$ 、 $\beta_{T,ij}$ 、 $\gamma_{T,ij}$ は2成分系の物質の組 み合わせごとに与えられるパラメータである。

式(10)の右辺第1項は次のように与えられる。

$$\phi_{mix}^{0}(\tau_{i},\delta_{i},X_{i}) = \sum_{i=1}^{n} X_{i} \Big[\phi_{i}^{0}(\tau_{i},\delta_{i}) + \ln(X_{i}) \Big]$$
(14)

また、式(10)の右辺第2項は次のように与えられる。

$$\phi_{mix}^{r}(\tau,\delta,\overline{X_{i}}) = \sum_{i=1}^{n} X_{i}\phi_{i}^{r}(\tau,\delta) + \Delta\phi^{r}(\tau,\delta,\overline{X_{i}})$$

$$\Delta\phi^{r}(\tau,\delta,\overline{X_{i}}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i}X_{j}F_{ij}\phi_{ij}^{r}(\tau,\delta)$$
(15)

ここで、 $\Delta \phi^{r}$ は過剰寄与項と呼ばれ、 $F_{ij} \ge \varphi^{r}_{ij}$ の 2 成分系の物質の組み合わせに対して経験的に与 えられる。

2.4. Helmholtz 自由エネルギーを使った混合流体 の物性計算式

混合流体の物性は、2.2 節の純物質流体の熱力 学関係式の ϕ を混合流体の無次元化 Helmholtz 自 由エネルギー ϕ_{mix} に置き換えることで求めるこ とができる。一例として、圧力、エンタルピー、 定積比熱の熱力学的関係式を示す。

(1) 圧力

$$\frac{p}{\rho RT} = 1 + \delta \left(\frac{\partial \phi_{mix}^r}{\partial \delta}\right)_{\tau}$$
(16)

$$(2) \pm \forall \beta \not \nu \not \in \neg$$

$$\frac{h}{RT} = \tau \left[\left(\frac{\partial \phi_{mix}^{0}}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi_{mix}^{r}}{\partial \tau} \right)_{\delta} \right] + \delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta} \right)_{\tau} + 1$$

$$(17)$$

(3)定積比熱

$$\frac{C_{\nu}}{R} = -\tau^2 \left[\left(\frac{\partial^2 \phi_{mix}^0}{\partial \tau^2} \right)_{\delta} + \left(\frac{\partial^2 \phi_{mix}^r}{\partial \tau^2} \right)_{\delta} \right]$$
(18)

2.5. Helmholtz 自由エネルギーを使った混合流体の物性計算式の具体例

Helmholtz 自由エネルギーを使った混合流体の 物性計算モデルの具体例として、文献[3]に基づい て空気の例を紹介する。このモデルは空気に対す る Helmholtz 自由エネルギーに基づいたモデルで、 混合物の物理量を理想気体の寄与、実在ガスの寄 与、混合による寄与の3つの線形結合で表すもの である。なお、空気は窒素、酸素、アルゴンで構 成されるものとする。

無次元 Helmholtz 自由エネルギー ϕ をこれまで と同様に定義する。

$$\phi \equiv a/RT \tag{19}$$

混合流体の無次元 Helmholtz 自由エネルギーを、 式(15)の右辺第1項を式(10)の右辺第1項に足し こんで、新たに φ_{idmix} を定義して次のように表す。

$$\phi_{mix} = \phi_{mix}^{0} + \phi_{mix}^{r}$$

$$= \phi_{idmix} + \phi_{E}$$
(20)

ここで、
$$\phi_{idmix}$$
 は次のようになる。

$$\phi_{idmix} = \sum_{i=1}^{3} X_i \Big[\phi_i^0(\tau_i, \delta_i) + \phi_i^r(\tau, \delta) + \ln X_i \Big]$$
(21)

 ϕ_E は過剰寄与項と呼ばれ、次のように表される。なお、これは式(15)の $\Delta \phi$ 「に相当する。

$$\phi_{E} = \left\{ \sum_{i=1}^{2} \sum_{j=i+1}^{3} X_{i} X_{j} F_{ij} \right\} \\ \times \begin{bmatrix} -0.00195245 \,\delta^{2} \tau^{-1.4} \\ + 0.00871334 \,\delta^{2} \tau^{1.5} \end{bmatrix}$$
(22)
$$F_{ij} = 1.121527 \ (Nitrogen - Argon)$$

$$F_{ij} = 0.597203 (Argon - Oxygen)$$

理想気体の Helmholtz 自由エネルギー a^{θ} [J/mol] は、理想気体の基準温度からのエンタルピー h^{θ} 、 および理想気体の基準温度からのエントロピー s^{θ} で表されるので、 ϕ^{θ}_{mix} も次のように表される。 $a^{\theta} = -RT +$

$$\sum_{i=1}^{3} X_i \left(h_i^0 - T s_i^0 + RT \ln X_i \right)$$

$$\phi_{mix}^0 = \frac{a^0}{RT}$$
(23)

ここで、*i*は窒素、アルゴン、酸素の3つについて和をとる。

最後に残っている剰余項の3成分の和は、文献 に基づいて経験的な近似多項式を用いて算出す る。

2.6. 純物質流体の物性データを活用した混合流体 の物性計算

2.3節と2.4節で述べた混合流体の物性計算は非 常に複雑で計算量が多いため、圧力、温度、密度、 エネルギーなどの物理量が時間的・空間的に変化 する流体解析と連成させて同時に物性計算を行 うことは、非常に多くの計算時間を必要とするこ とが予想される。かつ、流体解析と物性計算の連 成プログラムも煩雑なものとなって実用的では ない。そこで、2.1 節と 2.2 節で述べた純物質流体 の物性計算を用いて純物質流体の実在物性デー タをあらかじめ作成し、2.3 節と 2.4 節で述べた混 合流体の物性計算に活用することで物性計算の 負荷を軽減することが有効であると考えられる。 以下に、混合流体の物性計算方法を具体的に紹介 する。なお、純物質流体の実在物性データは REFPROP を用いて作成する。また、現状では、 窒素、酸素、アルゴンから成る空気のみに対応し ている。

(1) 圧力

混合流体の圧力の熱力学的関係式は次の通り である。

$$\frac{p}{\rho RT} = 1 + \delta \left(\frac{\partial \phi_{mix}^r}{\partial \delta}\right)_{\tau}$$
(24)

上式の φ^r_{mix} に式(15)を代入すると次のようになる。

$$\frac{p}{\rho RT} = 1 + \delta \left(\frac{\partial \phi_{mix}^r}{\partial \delta} \right)_{\tau}$$
$$= \sum X_i + \delta \left[\frac{\partial}{\partial \delta} \sum X_i \phi_i^r + \frac{\partial \Delta \phi^r}{\partial \delta} \right]_{\tau} \qquad (25)$$
$$= \sum X_i \left[1 + \delta \left(\frac{\partial \phi_i^r}{\partial \delta} \right)_{\tau} \right] + \delta \left(\frac{\partial \Delta \phi^r}{\partial \delta} \right)_{\tau}$$

式(25)の右辺第1項の括弧内(下線部)は純物質 流体の圧力の熱力学的関係式であるため、物性デ ータを用いて計算することができる。式(25)の右 辺第2項のΔφ[「]は、式(22)で示したように経験 的な式で与えられるため、簡単に計算できる。

(2)内部エネルギー

混合流体の内部エネルギーの熱力学的関係式 は次の通りである。

$$\frac{e}{RT} = \tau \left[\left(\frac{\partial \phi_{mix}^0}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi_{mix}^r}{\partial \tau} \right)_{\delta} \right]$$
(26)

上式の ϕ^{0}_{mix} と ϕ^{r}_{mix} に式(14)と式(15)を代入すると次のようになる。

$$\frac{e}{RT} = \tau \left[\left(\frac{\partial \phi_{mix}^{0}}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi_{mix}^{r}}{\partial \tau} \right)_{\delta} \right]$$

$$= \tau \left\{ \left[\frac{\partial}{\partial \tau} \sum X_{i} \phi_{i}^{0} + \frac{\partial}{\partial \tau} \sum X_{i} \ln X_{i} \right]_{\delta}$$

$$+ \left[\frac{\partial}{\partial \tau} \sum X_{i} \phi_{i}^{r} + \frac{\partial \Delta \phi^{r}}{\partial \tau} \right]_{\delta} \right\}$$
(27)
$$= \sum X_{i} \left[\tau \left(\frac{\partial \phi_{i}^{0}}{\partial \tau} + \frac{\partial \phi_{i}^{r}}{\partial \tau} \right)_{\delta} \right]$$

$$+ \tau \frac{\partial}{\partial \tau} \sum X_{i} \ln X_{i} + \tau \left(\frac{\partial \Delta \phi^{r}}{\partial \tau} \right)_{\delta}$$

式(27)の右辺第1項の括弧内(下線部)は純物質 流体のエンタルピーの熱力学的関係式であるた め、物性データを用いて計算することができる。 式(27)の右辺の第3項は、 $\Delta \phi$ 「を式(22)で示した ように経験的な式で与えられるため、簡単に計算 できる。

(3)エンタルピー

混合流体のエンタルピーの熱力学的関係式は 次の通りである。

$$\frac{h}{RT} = \tau \left[\left(\frac{\partial \phi_{mix}^{0}}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi_{mix}^{r}}{\partial \tau} \right)_{\delta} \right] + \delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta} \right)_{\tau} + 1$$
(28)

上式の ϕ^{0}_{mix} と ϕ^{r}_{mix} に式(14)と式(15)を代入すると次のようになる。

$$\frac{h}{RT} = \tau \left[\left(\frac{\partial \phi_{mix}^{0}}{\partial \tau} \right)_{\delta} + \left(\frac{\partial \phi_{mix}^{r}}{\partial \tau} \right)_{\delta} \right] \\ + \delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta} \right)_{\tau} + 1 \\ = \tau \left\{ \left[\frac{\partial}{\partial \tau} \sum X_{i} \phi_{i}^{0} + \frac{\partial}{\partial \tau} \sum X_{i} \ln X_{i} \right]_{\delta} \\ + \left[\frac{\partial}{\partial \tau} \sum X_{i} \phi_{i}^{r} + \frac{\partial \Delta \phi^{r}}{\partial \tau} \right]_{\delta} \right\}$$
(29)
$$+ \delta \left[\frac{\partial}{\partial \delta} \sum X_{i} \phi_{i}^{r} + \frac{\partial \Delta \phi^{r}}{\partial \delta} \right]_{\tau} + \sum X_{i} \\ = \sum X_{i} \left[\tau \left(\frac{\partial \phi_{i}^{0}}{\partial \tau} + \frac{\partial \phi_{i}^{r}}{\partial \tau} \right)_{\delta} + \delta \left(\frac{\partial \phi_{i}^{r}}{\partial \delta} \right)_{\tau} + 1 \right] \\ + \tau \frac{\partial}{\partial \tau} \sum X_{i} \ln X_{i} \\ + \tau \left(\frac{\partial \Delta \phi^{r}}{\partial \tau} \right)_{\delta} + \delta \left(\frac{\partial \Delta \phi^{r}}{\partial \delta} \right)_{\tau}$$

式(29)の右辺第1項の括弧内(下線部)は純物質 流体のエンタルピーの熱力学的関係式であるた め、物性データを用いて計算することができる。 式(29)の右辺の第3項と第4項は、 $\Delta \phi$ 「を式(22) で示したように経験的な式で与えられるため、簡 単に計算できる。

(4)定積比熱

混合流体の定積比熱の熱力学的関係式は次の 通りである。

$$\frac{C_{\nu}}{R} = -\tau^2 \left[\left(\frac{\partial^2 \phi_{mix}^0}{\partial \tau^2} \right)_{\delta} + \left(\frac{\partial^2 \phi_{mix}^r}{\partial \tau^2} \right)_{\delta} \right]$$
(30)

上式の ϕ^{0}_{mix} と ϕ^{r}_{mix} に式(14)と式(15)を代入すると次のようになる。

$$\frac{C_{\nu}}{R} = -\tau^{2} \left[\left(\frac{\partial^{2} \phi_{mix}^{0}}{\partial \tau^{2}} \right)_{\delta} + \left(\frac{\partial^{2} \phi_{mix}^{r}}{\partial \tau^{2}} \right)_{\delta} \right] \\
= -\tau^{2} \left\{ \left[\frac{\partial^{2}}{\partial \tau^{2}} \sum X_{i} \phi_{i}^{0} + \frac{\partial^{2}}{\partial \tau^{2}} \sum X_{i} \ln X_{i} \right]_{\delta} \\
+ \left[\frac{\partial^{2}}{\partial \tau^{2}} \sum X_{i} \phi_{i}^{r} + \frac{\partial^{2} \Delta \phi^{r}}{\partial \tau^{2}} \right]_{\delta} \right\}$$
(31)

$$= -\tau^{2} \sum X_{i} \left[\left(\frac{\partial^{2} \phi_{i}^{0}}{\partial \tau^{2}} \right)_{\delta} + \left(\frac{\partial^{2} \phi_{i}^{r}}{\partial \tau^{2}} \right)_{\delta} \right] \\
- \tau^{2} \left[\frac{\partial^{2}}{\partial \tau^{2}} \sum X_{i} \ln X_{i} + \left(\frac{\partial^{2} \Delta \phi^{r}}{\partial \tau^{2}} \right)_{\delta} \right]$$

式(31)の右辺第1項の括弧内(下線部)は純物質 流体の定積比熱の熱力学的関係式であるため、物 性データを用いて計算することができる。式(31) の右辺の第3項は、 $\Delta \phi$ 「を式(22)で示したように 経験的な式で与えられるため、簡単に計算できる。

(5)定圧比熱

混合流体の定圧比熱の熱力学的関係式は次の 通りである。

$$\frac{C_{p}}{R} = \frac{C_{v}}{R} + \left[1 + \delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta}\right)_{\tau} - \delta \tau \left(\frac{\partial^{2} \phi_{mix}^{r}}{\partial \delta \partial \tau}\right)\right]^{2} \qquad (32)$$

$$\frac{\left[1 + 2\delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta}\right)_{\tau} + \delta^{2} \left(\frac{\partial^{2} \phi_{mix}^{r}}{\partial \delta^{2}}\right)_{\tau}\right]}{\left[1 + 2\delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta}\right)_{\tau} + \delta^{2} \left(\frac{\partial^{2} \phi_{mix}^{r}}{\partial \delta^{2}}\right)_{\tau}\right]}$$

上式の φ^r_{mix} に式(15)を代入すると次のようになる。

$$\frac{C_{p}}{R} = \frac{C_{v}}{R} + \left[1 + \delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta} \right)_{\tau} - \delta \tau \left(\frac{\partial^{2} \phi_{mix}^{r}}{\partial \delta \partial \tau} \right) \right]^{2} \\
\left[1 + 2\delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta} \right)_{\tau} + \delta^{2} \left(\frac{\partial^{2} \phi_{mix}^{r}}{\partial \delta^{2}} \right)_{\tau} \right] \\
= \frac{C_{v}}{R} + \frac{B}{A} \tag{33}$$

$$A = 1 + 2\delta \left[\frac{\partial}{\partial \delta} \left(\sum X_{i} \phi_{i}^{r} + \Delta \phi^{r} \right) \right]_{\tau} \\
+ \delta^{2} \left[\frac{\partial^{2}}{\partial \delta^{2}} \left(\sum X_{i} \phi_{i}^{r} + \Delta \phi^{r} \right) \right]_{\tau} \\
B = \left\{ 1 + \delta \left[\frac{\partial}{\partial \delta} \left(\sum X_{i} \phi_{i}^{r} + \Delta \phi^{r} \right) \right]_{\tau} \\
- \delta \tau \left[\frac{\partial^{2}}{\partial \delta \partial \tau} \left(\sum X_{i} \phi_{i}^{r} + \Delta \phi^{r} \right) \right] \right\}^{2}$$

しかしながら、式(33)の分母Aに過剰寄与項 Δ ϕ ^rが存在するため、式(33)を純物質流体の定圧 比熱の熱力学的関係式を用いて線形的に表すこ とが困難なので、容易に計算することができない。 そこで、定積比熱、内部エネルギー、エンタルピ ーを用いて、定圧比熱を次のように求める。 $e=C \Delta T$

$$h = C_{\nu}\Delta T$$

$$C_{p} = C_{\nu}\frac{h}{e}$$
(34)

ここで、*AT*は基準からの温度を示す。

(6)音速

混合流体の音速の熱力学的関係式は次の通り である。

$$acs = \frac{C_{p}}{C_{v}}$$

$$\times \left[1 + 2\delta \left(\frac{\partial \phi_{mix}^{r}}{\partial \delta}\right)_{\tau} + \delta^{2} \left(\frac{\partial^{2} \phi_{mix}^{r}}{\partial \delta^{2}}\right)_{\tau}\right]$$
(35)

上式の φ^r_{mix} に式(15)を代入すると次のようになる。

$$acs = \frac{C_p}{C_v} \left[1 + 2\delta \left(\frac{\partial \phi_{mix}^r}{\partial \delta} \right)_{\tau} + \delta^2 \left(\frac{\partial^2 \phi_{mix}^r}{\partial \delta^2} \right)_{\tau} \right]$$
$$= \frac{C_p}{C_v} \left[1 + 2\delta \frac{\partial}{\partial \delta} \left(\sum X_i \phi_i^r + \Delta \phi^r \right)_{\tau} + \delta^2 \frac{\partial^2}{\partial \delta^2} \left(\sum X_i \phi_i^r + \Delta \phi^r \right)_{\tau} \right]$$
(36)
$$= \frac{C_p}{C_v} \left\{ \sum X_i \left[1 + 2\delta \left(\frac{\partial \phi_i^r}{\partial \delta} \right)_{\tau} + \delta^2 \left(\frac{\partial^2 \phi_i^r}{\partial \delta^2} \right)_{\tau} \right] \right\}$$
$$+ \frac{C_p}{C_v} \left\{ 2\delta \left(\frac{\partial \Delta \phi_i^r}{\partial \delta} \right)_{\tau} + \delta^2 \left(\frac{\partial^2 \Delta \phi_i^r}{\partial \delta^2} \right)_{\tau} \right\}$$

式(36)の右辺第1項の括弧内(下線部)は純物質 流体の音速の熱力学的関係式であるため、物性デ ータを用いて計算することができる。式(36)の右 辺の第2項は、 $\Delta \phi$ 「を式(22)で示したような経験 的な式で与えられるため、簡単に計算できる。

3. 純物質流体の物性データを活用した混合流体 の物性計算を用いた解析事例

本誌掲載のレポート「圧力伝播解析への数値解 析モデルの適用性検討」で取り上げた解析事例に 対して、純物質流体の物性データを活用した混合 流体の物性計算を用いて解析を実施し、混合流体 に対するその他の物性計算を用いた解析結果と の比較検討を行った。本章では、 Advance/FrontNet/F に新たに導入した混合流体の 実在物性計算モデルと、その解析結果について説 明する。

3.1. 混合流体の実在物性計算モデル

本解析の対象流体は空気であるため、2.6 節の 物性計算式は次のように具体的に書くことがで きる。なお、これまでの式中に現れる密度、内部 エネルギー、エンタルピー、定積比熱、定圧比熱 は、単位モル当たりで示されているが、本章での 混合流体を構成する各成分の密度、内部エネルギ ー、エンタルピー、定積比熱、定圧比熱は、単位 質量当たりに変換して示している。

$$(1) \pm \frac{p}{\rho_{mol}RT} = \frac{p}{RT} \sum \frac{X_i}{\rho_{i,mol}} + \frac{\rho}{\rho_r} \left\{ \left[\sum_{i=1}^2 \sum_{j=i+1}^3 X_i X_j F_{ij} \right] \times \left[-0.00195245 \left(\frac{2\rho}{\rho_r} \right) \left(\frac{T_r}{T} \right)^{-1.4} + 0.00871334 \left(\frac{2\rho}{\rho_r} \right) \left(\frac{T_r}{T} \right)^{1.5} \right] \right\}$$

$$(37)$$

なお、式(37)は、圧縮係数や密度の物性計算式と 等価な式となる。式(37)に

$$M_{i}X_{i} = MY_{i}$$

$$\rho_{i,mol} = \frac{\rho_{i}}{M_{i}}$$

$$\rho_{mol} = \frac{\rho}{\overline{M}}$$
(38)

を代入すると、次のようになる。

$$\frac{p}{\rho} = p \sum \frac{Y_i}{\rho_i} + \frac{RT}{\overline{M}} \frac{\rho}{\rho_r} \left\{ \left[\sum_{i=1}^2 \sum_{j=i+1}^3 X_i X_j F_{ij} \right] \times \left[-0.00195245 \left(\frac{2\rho}{\rho_r} \right) \left(\frac{T_r}{T} \right)^{-1.4} + 0.0087133 \left(\frac{2\rho}{\rho_r} \right) \left(\frac{T_r}{T} \right)^{1.5} \right] \right\}$$
(39)

ここで、 $\rho_i[kg/m^3]$ は圧力と温度から物性データを 検索して得られた成分密度である。

F_{ij}は無次元の定数であり、2成分系の物質の組み合わせに対して次のように与えられる[3]。

$$F_{ij} = 1.121527 (Nitrogen - Argon)$$

$$F_{ij} = 1.0 (Nitrogen - Oxygen) (40)$$

$$F_{ij} = 0.597203 (Argon - Oxygen)$$

擬似臨界温度 $T_r[K]$ と擬似臨界密度 $\rho_r[mol/m^3]$ は、 次のように与えられる[3]。

$$\frac{1}{\rho_r} = \sum_{i=1}^{3} \frac{X_i M_i}{\rho_{c,i}} + \sum_{i=1}^{2} \sum_{j=i+1}^{3} X_i X_j \xi_{ij}$$
(41)

(3)エンタルピー

$$T_{r} = \sum_{i=1}^{3} X_{i}T_{c,i} + \sum_{i=1}^{2} \sum_{j=i+1}^{3} X_{i}X_{j}\zeta_{ij}$$
(42)
 $\xi_{ij}[m^{3}/mol] \geq \zeta_{ij}[K]$ は 2 成分系の物質の組み合わせ
に対して次のように与えられる[3]。
 $\xi_{ij} = -0.76031 \times 10^{-6} (Nitrogen - Argon)$
 $\xi_{ij} = -0.41847 \times 10^{-6} (Nitrogen - Oxygen)$
 $\xi_{ij} = +0.41232 \times 10^{-6} (Argon - Oxygen)$
 $\zeta_{ij} = -1.237713 (Nitrogen - Argon)$
 $\zeta_{ij} = -0.856350 (Nitrogen - Oxygen)$
 $\zeta_{ij} = -2.115126 (Argon - Oxygen)$
各成分の臨界密度 $\rho_{c}[kg/m^{3}] \succeq 臨界温度 T_{c}[K]$ は次
の通りである。
 $\rho_{c,i} = 313.30 (Nitrogen)$
 $\rho_{c,i} = 436.14 (Oxygen)$
 $\rho_{c,i} = 535.60 (Argon)$

(44)

 $T_{c,i}$ = 126.19 (Nitrogen) $T_{c,i}$ = 154.58 (Oxygen) $T_{c,i}$ = 150.69 (Argon)

(2)内部エネルギー

-

以下、式(38)と同様の考え方の式を用いること で、内部エネルギー、エンタルピー、定積比熱な ども同様に表される。

$$h = \sum Y_{i} h_{i}$$

$$+ \frac{RT}{\overline{M}} \frac{T_{r}}{T} \left\{ \left[\sum_{i=1}^{2} \sum_{j=i+1}^{3} X_{i} X_{j} F_{ij} \right] \right]$$

$$\times \left[-0.00195245 \left(\frac{\rho}{\rho_{r}} \right)^{2} (-1.4) \left(\frac{T_{r}}{T} \right)^{-2.4} + 0.00871334 \left(\frac{\rho}{\rho_{r}} \right)^{2} (1.5) \left(\frac{T_{r}}{T} \right)^{0.5} \right] \right\} \quad (46)$$

$$+ \frac{RT}{\overline{M}} \frac{\rho}{\rho_{r}} \left\{ \left[\sum_{i=1}^{2} \sum_{j=i+1}^{3} X_{i} X_{j} F_{ij} \right] \right]$$

$$\times \left[-0.00195245 \left(\frac{2\rho}{\rho_{r}} \right) \left(\frac{T_{r}}{T} \right)^{-1.4} + 0.00871334 \left(\frac{2\rho}{\rho_{r}} \right) \left(\frac{T_{r}}{T} \right)^{1.5} \right] \right\}$$

(4)定積比熱

$$C_{v} = \sum Y_{i} C_{v,i}$$

$$-\frac{R}{\overline{M}} \left(\frac{T_{r}}{T}\right)^{2} \left\{ \left[\sum_{i=1}^{2} \sum_{j=i+1}^{3} X_{i} X_{j} F_{ij} \right] \right] \times \left[-0.00195245 \left(\frac{\rho}{\rho_{r}}\right)^{2} (3.36) \left(\frac{T_{r}}{T}\right)^{-3.4} + 0.00871334 \left(\frac{\rho}{\rho_{r}}\right)^{2} (0.75) \left(\frac{T_{r}}{T}\right)^{-0.5} \right] \right\}$$

$$(47)$$

$$e = \sum Y_{i}e_{i}$$

$$+ \frac{RT}{M} \frac{T_{r}}{T} \left\{ \left[\sum_{i=1}^{2} \sum_{j=i+1}^{3} X_{i}X_{j}F_{ij} \right] \right] \times \left[-0.00195245 \left(\frac{\rho}{\rho_{r}} \right)^{2} (-1.4) \left(\frac{T_{r}}{T} \right)^{-2.4} \right] + 0.00871334 \left(\frac{\rho}{\rho_{r}} \right)^{2} (1.5) \left(\frac{T_{r}}{T} \right)^{0.5} \right] \right\}$$
(45)

(5)定圧比熱

$$C_p = C_v \frac{h}{e}$$
(48)

(6) 音速 $acs = \frac{C_p}{C_v} \sum X_i acs_i$ $+ \frac{C_p}{C_v} \left\{ \frac{2\rho}{\rho_r} \left[\left[\sum_{i=1}^2 \sum_{j=i+1}^3 X_i X_j F_{ij} \right] \times \left[-0.00195245 \left(\frac{2\rho}{\rho_r} \right) \left(\frac{T_r}{T} \right)^{-1.4} \right] + 0.00871334 \left(\frac{2\rho}{\rho_r} \right) \left(\frac{T_r}{T} \right)^{1.5} \right] \right] \quad (49)$ $+ \left(\frac{\rho}{\rho_r} \right)^2 \left[\left[\sum_{i=1}^2 \sum_{j=i+1}^3 X_i X_j F_{ij} \right] \times \left[-0.00195245 (2) \left(\frac{T_r}{T} \right)^{-1.4} \right] + 0.00871334 (2) \left(\frac{T_r}{T} \right)^{1.5} \right] \right]$

3.2. 解析条件と解析ケース

解析に用いた管路系モデルと主要な解析条件は、 本誌掲載のレポート「圧力伝播解析への数値解析 モデルの適用性検討」の 3.1 節で示したものと同一 である。

解析は、数値解法として準陰解法 2[7]を用いて、 Courant 条件を 10.0 (音速基準) とした。また、混 合流体の組成のモル分率は、N₂:0.7812、O₂:0.2096、 Ar:0.0092 とした。解析ケースを表 1 に示す。解 析ケース 3 と解析ケース 4 は、本誌掲載のレポー ト「圧力伝播解析への数値解析モデルの適用性検 討」で取り挙げた解析と同じである。

No.	解析ケース名	物性計算
1	CEXNistH	混合流体、実在物性、
		Helmholtz 型状態方程式
2	CEXNist	混合流体、実在物性、理想
		気体型状態方程式
3	CEX_IM(前報出)	混合流体、理想気体
4	CEXC10(前報出)	空気単成分、実在流体

表 1 解析ケース一覧

3.3. 解析結果

4ケースの解析結果を比較したものを図 1から 図 3に示す。これらの図では、試験結果を■で示 して比較している。

前報掲載の解析ケース4は、空気を単成分の実 在物性の流体として解析を行っており、得られた 結果は試験結果との一致が良い。純物質の実在物 性データを基に Helmholtz 型状態方程式を用いて 混合流体の物性計算を行った解析ケース1では試 験結果との一致はさらに良くなり、圧力の振動周 期は良く一致している。また、解析ケース4より も結果の鈍りが少なく、よりシャープな圧力変化 が得られている。これは、特に観測点 P5 が顕著 である。

前報掲載の解析ケース3は、理想気体の混合流 体として解析を行ったものであるが、前報の通り、 試験結果に比べて圧力の振動周期が速い結果と なっている。解析ケース2は、各成分は純物質の 実在物性データを基にしているが、理想気体型状 態方程式を用いて混合流体の物性計算を行って いる。解析ケース3とは逆に試験結果に比べて圧 力の振動周期が遅い結果となっている。

以上から、純物質の実在物性データを基に Helmholtz型状態方程式を用いて混合流体の物性 の計算を行った解析結果は試験結果との一致が 最も良く、Advance/FrontNet/Γ に新たに導入した 混合流体の実在物性計算モデルの妥当性が確認 できた。

4. まとめ

多成分系の実在流体物性を考慮した解析を可 能にするため、熱物性値の計算に国際的にも広く 利用されている Helmholtz 型関数の状態方程式を、 ガス管路系流体解析ソフトウェア Advance/ FrontNet/Γに導入した。Helmholtz 型関数の状態方 程式を理論どおりに混合流体に適用すると、複雑 で計算量が多くなるばかりでなく、時間的・空間 的に物理量が変化する流体解析と連成させる際 の計算負荷が高くなってしまうことが容易に予 想でき実用的ではない。このようなことから、 REFPROP 等を用いてあらかじめ作成した純物質 流体の実在物性データを活用し、混合流体の Helmholtz 型関数の状態方程式を用いた物性計算 を行う仕組みを構築した。

Advance/FrontNet/Γ に新たに導入した混合流体 の実在物性計算モデルを用いて、本誌掲載のレポ ート「圧力伝播解析への数値解析モデルの適用性 検討」で取り上げた圧力伝播試験解析を実施した 結果、圧力の振動周期も含めて試験結果との良い 一致が見られた。このことから、混合流体の Helmholtz 型関数の状態方程式に基づく実在物性 計算モデルの妥当性を確認した。

現状では、窒素、酸素、アルゴンから成る空気 だけに限られるため、さまざまな混合流体にも適 用できるように、混合流体の実在物性計算モデル を充実させ、汎用化を目指していきたい。

参考文献

- [1] 大江修造著、物性推算法、データブック出版 社(2002)
- [2] REFPROP; https://www.nist.gov/srd/refprop____
- [3] Lemmon, E.W., Jacobsen, R.T, Penoncello, S.G., and Friend, D.G., "Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen from 60 to 2000 K at Pressures to 2000 MPa," J. Phys. Chem. Ref. Data, 29(3):331-385, 2000.
- [4] O. Kunz, R. Klimeck, W. Wagner, M. Jaeschke, "The GERG-2004 Wide-RangeEquation of State for Natural Gases and Other Mixtures", GERG

TM15, VDI Verlag, Düsseldorf, 2007.

- [5] O. Kunz and W. Wagner, "The GERG-2008
 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004", J. Chem. Eng. Data, 2012, 57 (11), pp 3032–3091, 2012.
- [6] Johannes Gernert, Andreas Jäger*, Roland Span,
 "Calculation of phase equilibria for multi-component mixtures usinghighly accurate Helmholtz energy equations of state", Fluid Phase Equilibria 375 (2014) 209–218.
- [7] 秋村、大須賀、三橋、"管路系流体解析ソフト ウェアへの陰解法導入による計算効率の向 上性検討"、アドバンスシミュレーション vol.24 (2017).
- ※ 技術情報誌アドバンスシミュレーションは、 アドバンスソフト株式会社 ホームページのシ ミュレーション図書館から、PDF ファイルが ダウンロードできます。(ダウンロードしてい ただくには、アドバンス/シミュレーションフ ォーラム会員登録が必要です。)