気液二相流解析ソフトウェア Advance/FrontFlow/MP

杉中 隆史*

Advance/FrontFlow/MP

Takafumi Suginaka*

Advance/FrontFlow/MP は二流体モデル(Euler-Euler 法)により気液二相流動を 3 次元で解析する ソフトウェアである。ここでは、Advance/FrontFlow/MP の特徴、機能および理論概要、プログラム構成と概略の計算の流れ図、入力説明、実行方法、使用例について説明する。

Key word: 気液二相流、二流体モデル、相変化、自由表面、壁面熱伝達、気泡合体、固体粒子の凝集

1. はじめに

Advance/FrontFlow/MP は気体と液体のそれぞれに対して、質量・運動量・エネルギーなどの保存方程式を解く二流体モデル (Euler-Euler 法)の手法により、気液二相流の流動特性や伝熱特性を3次元で解析する非構造格子系のソフトウェアである。Advance/FrontFlow/MP は1つのメッシュの中に多数の気泡や液滴が含まれても、それらの質量・運動量・エネルギーなどを保存して計算することができるため、メッシュサイズや時間刻みが大きくとれ、大規模な解析が可能である。

Advance/FrontFlow/MP の特徴は以下の①~ ⑥である。

- ①相変化や自由表面を安定に計算できる。
- ②壁面熱伝達モデルなどの構成方程式が組み 込まれている。
- ③気泡流、噴霧流、自由表面、沸騰、凝縮、 固体熱伝導を1回の計算の中で扱える。
- ④気泡群の個別運動と相互作用(高精度詳細 気泡流解析モデル)を扱える。
- ⑤気液二相流中で固体粒子が凝集を伴って運動する挙動を扱える。
- ⑥ソフトウェアを柔軟に修正することができる。

*アドバンスソフト株式会社 第2事業部 2nd Computational Science and Engineering Group, AdvanceSoft Corporation

2. 機能および理論概要

機能および理論概要は表1に記述した通りである。

表 1 機能概要

項目	機能	
二相流 の扱い	・二流体モデル(Euler-Euler 法)	
多孔質モデル	・速度の1次式による抵抗力(ダ ルシー則) ・速度の2次式による抵抗力 ・毛細管力	
乱流モデル	 ・混合型 k- ε モデル ・分散型 k- ε モデル(気泡流用) ・渦粘性一定 ・乱流モデルなし ・LES (次のバージョンで導入予定) 	
気泡合体	・ポピュレーションバランス ・気泡合体モデル (Prince&Blanch モデル、 Luoh モデル、Chesters モデル、 Lehr モデル)	
固体粒子 の凝集	・粒径グループごとの質量保存式・粒径グループごとの運動量保存式(1way)	
流動様式	・ボイド率により液体単相・気泡流・中間領域・噴霧流・気体単相を分類する方法 ・ボイド率と質量速度により液体単相・気泡流・スラグ流・中間領域・噴霧流・気体単相を分類する方法 ・混相状態は気泡流のみ・混相状態は噴霧流のみ	

気泡径	・臨界ウェーバー数に基づく式・一定値
液滴径	・気泡合体モデル・臨界ウェーバー数に基づく式・一定値
抗力係数	・神戸大・冨山らの式・剛体球の式・一定値
揚力係数	・神戸大・冨山らの式・一定値・使用しない
壁面 潤滑力	・Antal らのモデル ・使用しない
乱流 拡散力	・Lopez らのモデル ・使用しない
仮想 質量力	・仮想質量係数一定値・使用しない
最小安全 膜沸騰 温度	・バルク (境界層外) の液温と壁 温と圧力による相関式 ・一定値
限界 熱流束 温度	・Chen の核沸騰相関式と Zuber の限界熱流束相関式から求める 方法 ・一定値
相間熱伝達	・気泡流・噴霧流・中間領域を分 類慮する方法 ・気泡流のみ ・噴霧流のみ
壁面 熱伝達 係数	・液体単相(強制対流と自然対流 の大きい方)・サブクール核沸 騰・飽和核沸騰・遷移沸騰・膜 沸騰・蒸気単相(強制対流 と自然対流の大きい方)を自動 で分類して、それぞれの相間式 を使用する方法 ・壁面熱伝達様式ごとに一定値
離散化	• 有限体積法
アルゴリズム	 ・SIMPLE 法 ・節点中心法 ・セル中心法(次のバージョンで 導入予定) ・Rhie-Chow 法による圧力振動の 抑制
	・Muzaferija の手法による拡散項 の精度向上
時間積分	・Euler 陰解法 ・クランク・ニコルソン法

	•1 次精度風上差分
	• 2 次精度風上差分
移流項の	・2 次精度風上差分+リミタ
離散化	(TVD 法)
スキーム	• 2 次精度中心差分
	・1 次精度風上差分と 2 次精度中
	心差分のブレンド
並列計算	・自動領域分割法による並列計算
	• 初期値
	・流入境界条件
	・出力
ユーザー	・質量のソース項
サブル	・運動量のソース項
ーチン	・熱量のソース項
	・界面摩擦力
	• 壁面熱伝達係数
	・気泡合体のソース項

3. プログラム構成と概略の計算の流れ図

ユーザーは格子ファイルとコントロールファイルの2つのファイルを作成する。その後で、前処理、メインソルバーの実行、後処理を行うことにより計算は終了する。表2はプログラム構成、図1は概略の計算の流れ、図2はメインソルバーにおける各時刻での概略の計算の流れを示す。

なお、前処理は格子ファイルや解く保存方程式 の数や境界条件の種類が変わる場合に実行する。

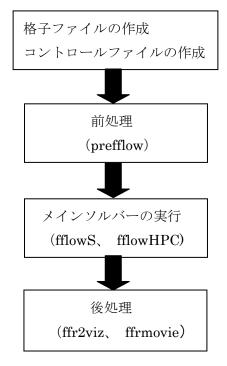


図1 概略の計算の流れ図

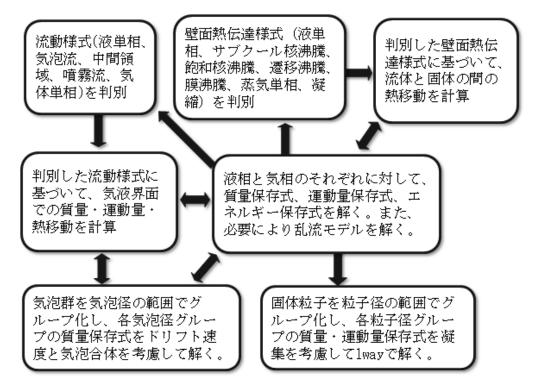
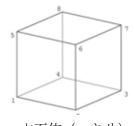
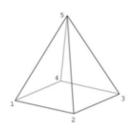


図2 メインソルバーにおける計算の流れ図


表 2 プログラム構成

処理の種類(実 行モジュール)	処理内容
前処理 (prefflow)	 ・格子のチェック ・CV (コントロールボリューム) の作成 ・CV と壁面の距離計算 ・必要な配列サイズの計算 ・並列計算時、CV を各CPUへ割り当て ・並列計算時、通信に必要な情報の抽出
メインソルバ	・fflowS はシングルプロセ
ーの実行	ッサによる実行
(fflowS,	・fflowHPC はマルチプロセ
fflowHPC)	ッサによる実行
後処理 (ffr2viz、 ffrmovie)	ffr2viz は可視化ファイル の作成ffrmovie はアニメーショ ンファイルの作成

4. 入力説明


格子ファイルは市販のグリッド生成ソフトウ ェアで作成する。

計算に使用できる格子形状は、図3に示すよう に、六面体(ヘキサ)、三角柱(プリズム)、四角 錐(ピラミッド)、四面体(テトラ)である。 これらの格子は混在して使用することもできる。

六面体 (ヘキサ)

三角柱 (プリズム)

四角錐(ピラミッド) 四面体(テトラ)

図3 格子形状

メッシュ作成時の注意点は次のようになる。

- ①重要な場所、着目する場所、物理量の変化 が大きい場所では、メッシュサイズを小さ くする。
- ②格子形状をできるだけ流れに沿うか直交に 近づけるように作成すると、計算精度が向 上する。
- ③壁面近傍では、六面体(ヘキサ)か三角柱 (プリズム)の底面を壁につけて3層にす ると、計算精度が向上する。
- ④アスペクト比が1に近いほど、計算精度と 計算安定性が向上する。

4.1. コントロールファイル

コントロールファイルは、fflow.ctl という名前 のファイルで、このファイルに熱流動計算に必要 な条件を記述する。

コントロールファイルは、当社の汎用プリポストプロセッサ Advance/REVOCAP の GUI で作成する方法とテキストエディタで作成する方法がある。

コントロールファイルへ記述方法は以下のようになる。

- ①コントロールファイルは fortran90 のネームリスト形式で記述する。
- ②各変数群は「& (アンパサンド)変数群名」 の行で始まり、「/ (スラッシュ)」で終わり、 これらの行の間に、変数とその設定値を 記述する。
- ③設定できる変数は変数群ごとに決められている。
- ④変数と設定値の式は「、(コンマ) 」で区 切って1行に記述することができる。
- ⑤コメント文を記述するには「! (エクスクラメーション・マーク)」を使用する。「!」を記述した行において、「!」から右側がコメントになる。

コントロールファイルに記述する変数群は次 のようになる。

表 3 コントロールファイル内の変数群

変数群名	入力内容
model	計算モデル
files	入出力ファイル名
hpc	並列計算
dimension	計算領域の次元
time	時間
deltat	時間刻み
simple	SIMPLE 法
cgsolver	CG 法による行列解法
species	化学種
	粘性係数、プラントル
fluid	数、飽和温度、
	飽和エンタルピ
solid	固体の密度、比熱、
	熱伝導率
initial	1 相の初期値
Initial2	2 相の初期値
boundary	境界条件
gravity	重力、浮力
gassrc	気体の発生
Eul2ph	相の数、相の定義
kemodel	k- ε モデルの
	モデル定数
flagkeps	k-εモデルと
	0 方程式モデル
flagalp	流動様式、揚力、
£1t	壁面潤滑力、乱流拡散力相変化モデル
flagtemp	気泡径、液滴径、
parameters	表面張力係数
bcoal_param	気泡合体モデル
pcoag_param	固体凝集モデル
les	時間平均
monitor	モニター出力
animation	アニメーション
output	ファイル出力
mvrot	固体の移動
1111101	バランスチェック、
misc	ユーザーサブルーチン
111100	へ渡す変数
usrsub	ユーザーサブルーチン

5. 実行方法

5.1. 操作法

Advance/FrontFlow/MP のインストールディ レクトリが「/home/FrontFlow_MP/」であるとす ると、実行手順は以下のようになる。

- ①格子ファイルとコントロールファイルを作成し、作業ディレクトリに置く。
- ②前処理を以下のコマンドで実行する。
 - \$ /home/FrontFlow MP/prefflow
- ③メインソルバーを以下のコマンドで実行する。以下の12は並列数を表わす。
 - \$ mpirun -np 12

/home/FrontFlow_MP/bin /fflowHPC

- ④可視化用のファイルを作成する。
 - \$ /home/FrontFlow_MP/bin//ffr2viz -m 12 -r result.frontflow -g geom.frontflow -gf FF -o RES -rf VTK

5.2. 結果の見方

計算結果の可視化は使用する可視化ソフトの 操作方法に従って行う。

5.3. 異常終了時の対処方法

異常終了時の対処方法は以下のようになる。

- ①メッシュの単位と計算の単位 (m)の変換を確認する。メッシュの単位が mm の場合、&files変数群の変数gdScaleは1.d-3である。
- ②初期条件、境界条件、流体の物性値などの 設定値が正しいか確認する。
- ③計算ログの MAX.COURANT で示されている最大クーラン数を確認する。最大クーラン数は一般的には 1~10 でよいが、発散する場合には時間刻みを小さくする。
- ④緩和係数を小さくする。
- ⑤simple の最大反復数を多くする。
- ⑥沸騰の計算では、 i_pc 、 i_cends 、ibcbht を全て 2(1ステップ前の値) を 1(現在の値) にすると発散しなくなることがある。

- ⑦メッシュの品質を良くする。
- ⑧出口からの逆流が大きい場合には、出口を 延ばすか、出口に抵抗を置く。
- ⑨原因が分からない場合には、問題を簡単にして、どの段階で発散するかを調べて対策をとる。

6. 使用例

気泡塔内の流動解析を行う方法を以下に説明 する。

6.1. 解析対象

解析対象は図4に示すように、上面が開いている円筒容器に水が満たされていて、下面から空気が注入される。空気は上面から抜け、水は気泡の浮力によって容器内を循環する。

図4 気泡塔のイメージ図

6.2. 解析条件

解析条件は以下の通りとする。

・気泡塔の内径:138 mm

・気泡塔の長さ:1370 mm

・気体の密度: 1.2 kg/m³

・液体の密度: 1000 kg/m³

・気体の粘性係数: 1.8×10⁻⁵ Pa・s

・液体の粘性係数:1×10⁻³Pa・s

・気体の空塔速度(気体の流量を入口の断面積

で割った値): 3.8 cm/s

・ 気泡径:3 mm

- ・非定常計算:30 秒までの現象を計算
- ・時間刻み: 0.001 秒で一定

6.3. コントロールファイル

本解析に必要な全ての設定をしたコントロールファイルは以下のようになる。

```
&model!計算モデル
      flow
              = 'incomp'! 非圧縮性
              = 'no'! 乱流モデルなし
      trbmdl
      cal t
              =0!温度計算なし
&files!入出力ファイル名
      gdformat = 'GF'! 格子の形式
      gdScale = 1.d-3!長さの単位変換
      ffrgrid
              = '../org/bubble column.gf'
      ffrgridform = 'a'
&hpc!並列計算
      ncpu = 12! 並列数
&time!時間
      start = -1! 計算開始ステップ
            = 40000!計算終了ステップ
      end
      flowcon = 2!非定常/定常
&deltat!時間刻み
           = 1.d-3! 時間刻み
      dt
      option = 'const'! 時間刻み一定
&simple!simple法
      iter
          = 4!最大反復数
&species! 化学種
      name = 'none'
&fluid!流体の物性値
      IMAT_U = 1!マテリアル1番
      muopt = 'const'
      mu
             = 1.0d-3!1相の粘性係数
             = 1.8d-5! 2相の粘性係数
      mu2
&initial!1相の初期値
      IMAT_U = 1!マテリアル1番
          = 101325! 圧力
          = 303.15! 温度
          = 0! X方向速度
      u
          = 0! Y方向速度
          = 0! Z方向速度
      w
      dens = 1000!液体密度
      aks = 0.99999999、1.d-7!体積割合
&initial2!2相の初期値
      IMAT U = 1!マテリアル1番
```

```
t2
            = 303.15! 温度
      u2
            = 0! X方向速度
       v2
            = 0! X方向速度
       w2
            = 0! Z方向速度
      dens2 = 1.2! 気体密度
&boundary! 境界条件
      no
            = 1
       name = 'INLE'!境界面の名前
      kind = 'wall'!壁面境界
            = 'no'! no-slip条件
            = 0
            = 0
            = 0
            = 0
       u2
       v2
            = 0
       w2
            = 0
&boundary!境界条件
      no
           =2
      name = 'OUTL'! 境界面の名前
      kind = 'outlet'!流出境界
           = 101325
           = 1.0
      u
           = 0.0
           = 0.0
       u2
           = 0.0
           = 0.0
       v2
       w2
           = 0.0
      aks = 0.9999999, 1.d-7
&boundary!境界条件
            =3
      name = 'WALL'! 境界面の名前
      kind = 'wall'!壁面境界
       vel
           ='no'
            = 0
            = 0
            =0
            = 0
       u2
       v2
            = 0
            =0
      w2
&gravity! 重力
            = 0、0、-9.807! 重力成分
      rho = 1000
      rho2 = 1.2
&Eul2ph!相の数、相の定義
      phase_type ='LIQUID', 'GAS'
&flagalp!流動様式
      iflwmp
               = 0! 気泡流
&parameters
       d b0
              = 3.d-3! 気泡径
```

```
d d0
             = 1.d-6! 液滴径
             = 7.3d-2!表面張力係数
      sigma
&gassrc! 気体の発生
      i_gsrc
            =1!気体の発生を使用
      xl
             = -1.d20! Xの下限
      yl
             = -1.d20!Yの下限
      zl
             = 0! Zの下限
      xu
             = 1.d20! Xの上限
             = 1.0d20!Yの上限
      yu
             = 0.01! Zの上限
      zu
             = 7.21168! 発生量
&les!時間平均
                   = 1001! 平均開始
      NSTART
      uvw ave rms re = 1!速度
      average rans(2) = 1! ボイド率
&monitor!モニター出力
      moni_inter = 1! モニター間隔
      monitor x = 0!モニターX座標
      monitor_y = 0!モニターY座標
      monitor_z = 0.5! モニターZ座標
&output !可視化ファイルの出力
      start = 0! 出力開始ステップ
      inter = 1000! 出力間隔
      file = 'result'! 可視化ファイル
      type = 'inter_i' ! ステップ間隔
&output!リスタートファイルの出力
      start = 0 ! 出力開始ステップ
      inter = 1000! 出力間隔
      file = 'restart' ! リスタートファイル
      type = 'inter_i'! ステップ間隔
```

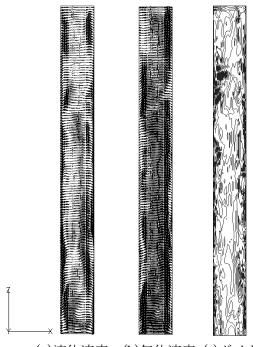
6.4. 実行方法

実行方法は5.1にも示したように以下のようになる。

- ①格子ファイルとコントロールファイルを作業し、作業ディレクトリに置く。
- ②前処理を以下のコマンドで実行する。
 - \$ /home/FrontFlow_MP/prefflow
- ③メインソルバーを以下のコマンドで実行する。以下の12は並列数を表わす。
 - \$ mpirun -np 12

/home/FrontFlow MP/bin /fflowHPC

④可視化用のファイルを作成する。


\$ /home/FrontFlow_MP/bin//ffr2viz -m 12 -r result.frontflow -g geom.frontflow -gf FF -o RES -rf VTK

6.5. 可視化

図 5 は 30 秒後の液体速度、気体速度、ボイド 率の瞬時分布を可視化したものである。

図6は高さ方向中央位置におけるボイド率の時間平均値を Hills の実験値[1]を含めて表示したものである。

図7は高さ方向中央位置における液相速度の時間平均値を Hills の実験値[1]を含めて表示したものである。

(a)液体速度 (b)気体速度 (c)ボイド率 図 5 30 秒後の瞬時分布

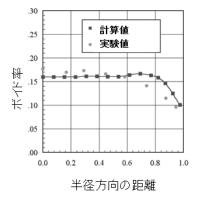


図 6 高さ方向中央位置のボイド率の時間平均値

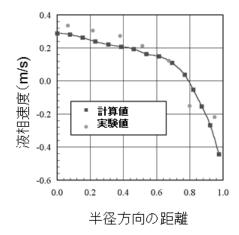


図 7 高さ方向中央位置の液相速度の時間平均値

参考文献

- [1] Hills, J. H., 'Radial adial non-uniformity of velocity and voidage in a bubble column ', Trans. Inst. Chem. Eng. ,52, (1974) 1-9
- [2] 杉中, 大島, 三橋, "気液二相流解析ソフトウェア Advance/FrontFlow/MP の概要", アドバンスシミュレーション Vol. 13
- [3] 杉中, 大島, "解析例 気泡塔解析の入力データを実行方法", アドバンスシミュレーション Vol. 13

※技術情報誌アドバンスシミュレーションは、アドバンスソフト株式会社 ホームページのシミュレーション図書館から、PDFファイルがダウンロードできます。(ダウンロードしていただくには、アドバンス/シミュレーションフォーラム会員登録が必要です。)