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template<typename T>
__global__ void axpy_kernel
(
const int n,
const T alpha,
const T *g_inl,
const T *g_in2,
T *g_out
X
int 1 = blockDim.x * blockldx.x
+ threadldx.x;
if( 1 <n) gout[i] =
alpha * g_inl[i] + g_in2[i];
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GPU
CPU
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3 n
THREAD
DIV(n, THREAD)

#define THREAD 256
#define DIV(x,y) ((CO+(¥)-1)/(¥))

template<typename T>
__host__ cudaError_t axpy
(
const int n,
const T alpha,
const T *g_inl,
const T *g_in2,
T *g_out
X
axpy_kernel<T><<<DIV(n,THREAD) , THREAD>>>
(n, alpha, g_inl, g_in2, g_out);
return cudaGetLastError();

}
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r=b— Ax (double precision)

do while(r|/|b] > £){
solve Ay =r (single precision)
X=X+Yy (double precision)
r=r—Ay (double precision)

}
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CpPU GPU

2 GPU

forward_substitution () {
for( 1=0; 1 < ngroups; i++ ){
parallel _group _kernel (1 );

}
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