GPGPU

Advance/DESSERT

GPGPU

Advance/DESSERT

*

Applying GPGPU Technology for a Practical Application
Speed-up Results in Device Simulator “Advance/DESSERT”

Shogo Sakurai*

1
CPU
GPU Graphics Processing Unit
2 CPU
GPU
GPGPU:General-purpose
computing on GPUs
GPU CPU
Fermi
GPU
NVIDIA Tesla C2050 4
(1] Tesla C1060
ECC L1/L2
NVIDIA Web
GPGPU CUDA
(2] C,C++ API
OpenMP
* 2

2" Technical Division, AdvanceSoft Corporation

72

GPU
Fortran (3]
GPGPU [4][5], (6]
[7] (8]

1 HPC (INVIDIA Tesla
C1060 ()NVIDIA Tesla C2050[1]

2010 GPGPU

Advance/DESSERT
GPGPU

CUDA

2010.11 Vol.5

3. CUDA

x,b N A NN

CAE(Computer Aided Engineering)

(conjugate gradient)

A
(condition number)
1
[9]
(1) M
M Ax=M"b 2
3. CUDA
GPGPU
CUDA
2 2
gout —a ginl + ginz (3)
GPU

CUDA
(blockDim,blockldx, threadldx)
GPU
CPU

GPU

2010.11 Vol.5

template<typename T>
__global__ void axpy_kernel
(
const int n,
const T alpha,
const T *g_inl,
const T *g_in2,
T *g_out
X
int 1 = blockDim.x * blockldx.x
+ threadldx.x;
if(1 <n) gout[i] =
alpha * g_inl[i] + g_in2[i];

b3
2
GPU
CPU
3 2
CUDA
3 n
THREAD
DIV(n, THREAD)

#define THREAD 256
#define DIV(x,y) ((CO+(¥)-1)/(¥))

template<typename T>
__host__ cudaError_t axpy
(
const int n,
const T alpha,
const T *g_inl,
const T *g_in2,
T *g_out
X
axpy_kernel<T><<<DIV(n,THREAD) , THREAD>>>
(n, alpha, g_inl, g_in2, g_out);
return cudaGetLastError();

}

73

GPGPU Advance/DESSERT
ELLPACK-R
GPU CPU
Fermi
CG
GPU
Fermi
NVIDIA [10] L1/L2
ELLPACK-R
[11]
GPU
® indices: CUDA [12] [4]
(nrows>width)
® clems: (nrows ><
width)
® 1l (nrows) 4,
1
indices
i . vl
row [0|1|5|7|x|>x Z
\l/ 1(2|8(10|11|15 6 |
2|3[5]|6[8]|<| |5
214|510 >x|x< i
; I ; I ; I ; i_i Gummel
15(16|18|><|><|>=< 3
16|17 |18 |19| ><| > i
4 ELLPACK-R 1
4
=< padding
74 2010.11 Vol 5

5.
1
GPU
GPU
M -1 ~ D_l (4)
D A
SOR
M= (D+ N)‘1 = D‘l(l + D‘lN)‘1
o (5)
=D") (-1)*(D'N)* *D*(I -D'N)
k=0
N A
GPU
AINV
FSAI,bi-conjugation [13]
SOR LU
GPU
LU fill-in
fill-in
[13]
LU

LU Multigrid
LU

2010.11 Vol.5

Multigrid
N
A
[14]
Gummel
1
(@]
Gauss-Seidel, SOR
LU
Multigrid
Polynomial, o SOR
Chebyshev
AINV o ILU
FSAI o
bi-conjugation
6.
GPU
GPU
GPU CPU
[15] CPU
[16]

75

GPGPU

Advance/DESSERT

r=b— Ax (double precision)

do while(r|/|b] > £){
solve Ay =r (single precision)
X=X+Yy (double precision)
r=r—Ay (double precision)

}
5 [16]
2
76,727 40,080
(CG) (BICGSTAB)
CPU
423 492 380 417
CPU-GPU
465 0.81 1,341 0.86
(CPU:Core2Du06300, GPU:GeForce9800 GT)
GPU
Advance/DESSRT
1
GPU-CPU /
CPU
2
GPU NVIDIA
Geforce 9800GT CPU
Intel Core2 Duo 6300

76

[17] 2
GPU
7. LU Fermi
LU
1
CPU
GPU
GPU
6 CUDA
2010.11 Vol.5

LU Fermi

[18]

Cuthill-Mckee (18] MCM

Tesla C1060 Tesla C2050(Fermi)

8
CpPU CPU
MCM
LU
Advance/DESSERT
ILU(0)
M =(D'+E)D'*(D'+F) (6)
D~ LU
E,F
A
Eisenstat trick
[9] D~
A« A+ adiag(A) (7
[19] a
0.01 CpPU 8MB
Intel Xeon 5540
3
CPU GPU
GPU

2010.11 Vol.5

CpPU GPU

2 GPU

forward_substitution () {
for(1=0; 1 < ngroups; i++){
parallel _group _kernel (1);

}

b3
6
3
N-1-P (7
ICCG() ILU-BICGSTAB(
)
CPU:
GPU: Cuthill-Mckee

CPU Xeon E5540 (2.53GHz), GPU NVIDIA

Tesla C1060, C2050

CPU,GPU

1E-15,

1E-20

77

GPGPU Advance/DESSERT

R R e GPU
ELECTRON DENSITY[1 fomd)

I De+018

H 1 5a+017 [20]
S0e+017 MCM
2. 7o+ 000 1
11
30x30x300 45x45x300
7 N-I-P 356 385

E 45x45x300
® 30x30x300

ot
.]|
GPU Tesla C2050 - 4"
CPU C1060 C2050

f053 =

GPU Tesla C1060 | gl 47

® 106

CPU | il 1

(a)30x30x300
axN15
a 30x30x300
CPU GPU Tesla C2050
45%x45%300
GPU GPU Tesla C1060
45%45x300
MCM

(b)45x45x300

78 2010.11 Vol.5

7 GPU
= = CPU
C1060
== = (C2050
cpu
¥ C1060

c2u30 [1] NVIDIA TESLA C2050,

: URL:http://www.elsa-jp.co.jp/products/hpc/i
ndex.html

[2] NVIDIA GPU Computing Developer Home

rd rd
» ¥
=z &

Page,

300000 600000 900000 URL:http://developer.nvidia.com/object/gpu
computing.html

[3] PGI CUDA Fortran Compiler,
URL:http://www.pgroup.com/resources/cud
afortran.htm

[4] , , CUDA

45x45x45 7, , 2009.

[6] David B. Kirk, Wen-mei W. Hwu,
“Programming Massively Parallel

30x30x30 Processors - A Hands-on Approach”,
Morgan Kaufmann, 2009.

[6] :

ASCII.technologies, " GPGPU
1 51 101 151 201 251 301 351 2010 8
[7] GPU 2010,
URL:http://www.nv-event.jp/gpu-computin
g/
8. [8] GPU ,
Tesla C1060 URL:http:/gpu-computing.gsic.titech.ac.jp/
C2050 index-j.html

[9] Yousef Saad, "Iterative Methods for Sparse
Linear Systems", 2nd ed. SIAM, 2003.
1 [10] Nathan Bell, Michael Garland, "Efficient
Sparse Matrix-Vector Multiplication on
Fermi CUDA", CUDA ZONE, 2008.
[11] F. Vazquez, et al. "The sparse matrix vector

GPU product GPU", 2009.

2010.11 Vol.5 79

GPGPU

Advance/DESSERT

[12] NVIDIA, "GPU Computing SDK code
samples",
URL:http://developer.nvidia.com/object/cud
a_3_1_downloads.html

[13] Michele Benzi, "Preconditioning
Techniques for Large Linear Systems: A
Survey", Journal of Computational Physics,
vol. 182, pp. 418-477, 2002.

[14] Ulrich Trottenberg, Cornelis Oosterlee,
Anton Schuller, “Multigrid”, Academic
Press, 2001.

[15] Dominik Goddeke, Robert Strzodka, Stefan
Turek, “Accelerating Double Precision
FEM Simulations with GPUs”, In
Proceedings of ASIM 2005 - 18th
Symposium on Simulation Technique, Sept.
2005.

[16] " , 1977.

[17] Serban Georgescu, Hiroshi Okuda,
"Conjugate Gradients on Graphic
Hardware: Performance & Feasibility",
PARA 2008 9th International Workshop on
State-of-the-Art in Scientific and Parallel
Computing.

[18] , "OpenMP
an-,

, Nov. 2007.

[19] T. A. Manteuffel, "An Incomplete
Factorization Technique for Positive
Definite Linear Systems", Mathematics of
Computation, vol. 34, pp. 473-497, 1980.

[20] Wu-chun Feng, Shucai Xiao, "To GPU
Synchronize or Not GPU Synchronize?",
NVIDIA GPU Computing Theater, 2010.

80

2010.11 Vol.5

