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1. はじめに 

近年、単一コア CPUの性能向上が頭打ちにな

る中、GPU（Graphics Processing Unit）は毎年

2倍近い性能向上を達成し、CPUよりも格段に優

れた演算性能・メモリバンド幅を有している。こ

の GPUをグラフィックス処理以外の汎用計算に

応用する取り組み（GPGPU:General-purpose 

computing on GPUs）は、国内外でここ数年目覚

ましく進展しており、数値シミュレーション手法

の実装・高速化等の研究も顕著な広がりを見せて

いる。 

GPUは性能比でCPUよりもコストパフォーマ

ンスに優れており、科学技術計算を行う際に重要

な、本格的な倍精度演算対応のプロセッサ Fermi

を載せた GPUコンピューティングボード

NVIDIA Tesla C2050が本年 4月にリリースされ

ている[1]。これは前世代の Tesla C1060よりも倍

精度演算性能が向上したことに加え、科学技術計

算分野で重要なECCをサポートし、新たに L1/L2

キャッシュが搭載されている。このようなハード

ウェアの発展と共に、プログラム開発環境も整え

られており、誰でも無償で NVIDIAのWebサイ

トを通じて GPGPU開発環境 CUDAが入手でき

る[2]。現在は、これにより C,C++言語による API

が提供されているが、サードベンダーからは

OpenMPのようにコードにディレクティブを挿 
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入するだけで GPUによる高速化が実現できる

Fortran開発環境も提供されている[3]。また、

GPGPUに関する書籍[4][5],雑誌記事[6]も充実し

てきており、展示会[7]や研究会[8]も盛況である。 

 

 

図 1 HPC 向け倍精度対応ボード (左)NVIDIA Tesla 

C1060 (右)NVIDIA Tesla C2050[1] 

このように 2010年は GPGPUの一大ブームが

生まれた年であった。しかし、このようなブーム

はまだ科学技術計算分野の研究者やプログラム開

発者に留まっており、真にエンドユーザの利益に

供するアプリケーションの開発はこれからである。 

そこで本稿では、半導体デバイス設計において

欠かすことのできないデバイスシミュレーション

を例に取り、当社が独自に開発したデバイスシミ

ュレータ Advance/DESSERTへの CUDAを利用

した GPGPUによる高速化について報告する。 

 

2. 線形疎行列解法について 

デバイスシミュレータの高速化において重要な

点は、計算時間の大半を占める以下の線形疎行列

方程式を如何に高速化するかにある。 



3. CUDA によるプログラミング 
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Ax b=  (1)
ここで、x,bは大きさ Nのベクトル、Aは N×Nの

疎行列である。デバイスシミュレーションにおい

てこのような方程式は、電子と正孔の移流拡散及

び電場の方程式を離散化して得られる。また、数

値流体力学や構造解析などのいわゆる

CAE(Computer Aided Engineering)分野でも同

様の方程式が現れる。行列サイズが大きくなると、

この方程式を代数的な処理によって直接的に解く

方法を適用することは難しくなり、代わって共役

勾配法(conjugate gradient)に代表される反復法

が使われる。しかし、この方法では行列 Aの条件

数(condition number)が悪い場合では安定に収束

させることが難しく、それに対処する工夫が必須

である。これは特に行列の前処理として 1つの研

究分野となっている[9]。この前処理付き共役勾配

法は、(1)式を解く代わりに、前処理行列 Mを用

いて、 
1 1M Ax M b− −=  (2)

を解くことに帰着される。この手法は様々な物理

現象の解析に現れる線形疎行列方程式を解く強力

な数値解法技術として、数多くの設計支援ソフト

ウェアに用いられている。 

 
3. CUDAによるプログラミング 

具体的な話に進む前に、先ず GPGPU開発環境

CUDAによるプログラミングについて簡単に触

れておきたい。図 2には、2つのベクトル和の計

算 

1 2out in ing g gα← +  (3)
を GPU上で行うコードが示されている。このコ

ードでは、CUDAが提供するビルドイン変数

(blockDim,blockIdx,threadIdx)を利用し

て GPUの各スレッドがベクトルの個々の要素

（アドレス）を参照し、ベクトル和の計算を実施

している。ここで、CPUのように一つひとつの要

素に対し逐次的に和を取っていく訳ではなく、

GPUでは一度に極めて多数のスレッドを起動す

ることにより、同時に個々の要素の和を取ること

ができる。 

 
template<typename T> 
__global__ void axpy_kernel  
( 
  const int n, 
  const T alpha, 
  const T *g_in1, 
  const T *g_in2, 
  T *g_out  
){ 
  int i = blockDim.x * blockIdx.x  

+ threadIdx.x; 
  if( i < n ) g_out[i] = 

alpha * g_in1[i] + g_in2[i]; 
}  

図 2 ベクトル和のカーネル関数 

このように GPU上で実行する関数は、カーネル

関数と呼ばれる。一方で、この関数は CPU側か

らの指示により起動する。これに該当するコード

をホスト関数（もしくはホストコード）と呼ぶ。

図 3には図 2のカーネル関数を呼び出すホスト

関数が示されている。CUDAにおける全てのスレ

ッドは、ブロック単位で管理されており、ホスト

関数では、ブロック当たりのスレッド数とブロッ

クの個数が設定される。図 3では nをベクトルの

サイズとして、それぞれ THREADマクロと

DIV(n,THREAD)マクロがこれに該当している。 

 
#define THREAD 256 
#define DIV(x,y) (((x)+(y)-1)/(y)) 
 
template<typename T> 
__host__ cudaError_t axpy  
( 
  const int n, 
  const T alpha, 
  const T *g_in1, 
  const T *g_in2, 
  T *g_out  
){ 
  axpy_kernel<T><<<DIV(n,THREAD),THREAD>>>

(n, alpha, g_in1, g_in2, g_out); 
  return cudaGetLastError(); 
} 

図 3 ホスト関数 

これらは、2つのベクトルの和を計算するもので
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あったが、共役勾配法では、更に行列・ベクトル

積や内積計算などを効率的に行う必要がある。こ

こで、計算に用いられる行列は多くのゼロ要素を

含んだ疎行列であることから、行列・ベクトル積

の計算では、メモリ使用量の少ないデータ構造で

ありつつも同時に GPU上で効率的な演算ができ

る必要がある。 

本稿では、NVIDIAの研究者が性能評価し[10]、

その後の別の研究者が改良した ELLPACK-Rフ

ォーマット[11]を利用した。このフォーマットで

は、疎行列を以下のデータを用いて表現する。 

 indices:各行の非ゼロ要素カラムインデックス 

(nrows×width 個の要素) 

 elems: 非ゼロ要素の係数データ (nrows×

width 個の要素) 

 rl: 各行の非ゼロ要素数 (nrows 個の要素) 

 
図 4 ELLPACK-R フォーマット 

 
このデータ構造イメージを図 4に示す。図中の

×は、ゼロ要素を示した padding要素であり、こ

れが多いと無駄にメモリを消費してしまうが、デ

バイスシミュレーションやそれ以外の多くの例で

は、一行当たりの非ゼロ要素数のバラツキはそれ

ほど大きくはない。このデータ構造の利点は、各

列のデータがアドレス空間で隣接しており、デー

タアクセスの際に一塊として転送されやすい点に

ある。このように疎行列そのもののデータアクセ

スは効率的に行えるが、それに掛け合わされるベ

クトルは、ランダムアクセスとなる。これは、

ELLPACK-R以外の疎行列用データフォーマッ

トでも同様である。GPUでは CPUよりもキャッ

シュの利用に制限があり、Fermi以前のプロセッ

サでは、テクスチャーキャッシュと呼ばれる CG

レンダリング用のキャッシュを明示的に使用する

ことである程度効率的なランダムアクセスが実行

できる。Fermiは、テクスチャーキャッシュとは

別に L1/L2キャッシュを備えており、プログラマ

ーが意識せずとも、効率的なランダムアクセスが

計られている。 

GPU上でのベクトルの内積計算については、

既に CUDAのサンプルコード[12]や書籍[4]で既

に詳しく解説されていることからここでの説明は

省略する。 

 
4. デバイスシミュレーションで求められる前処

理の性質1 

デバイスシミュレーションでは、デバイス端子

の電圧を少しずつ変化させて電流を計算し、一本

の電圧電流曲線を求める。この際、電子と正孔と

静電ポテンシャルはそれぞれ強く連成しており、

電圧電流曲線中の各点において非線形連成方程式

を解く必要がある。通常は、Gummel法による外

部反復を行うことでこの方程式を解くことが行わ

れる。この反復は少なければ数回で収束するが、

多いときには数百回のオーダーとなる。この 1つ

の反復において、電子と正孔、静電ポテンシャル

に対応する方程式が共役勾配法を用いて順番に解

かれる。この時、各外部反復において、疎行列の

非ゼロ要素の値が変動し、前処理行列の再生成が

必要となることから、この時間が短いことが求め

られる。但し、デバイスシミュレーションでは、

アダプティブメッシュのような場合を除いて、計

算中にメッシュ点は変化しないため、各疎行列の

非ゼロ要素の場所は変わらない。 

 
                                                  
1 ここでは、定常問題で必要とされる性質について

議論する。 
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5. 様々な前処理手法 

一概に前処理付き共役勾配法といっても表 1

に示すように様々な前処理手法があるが、収束性

と GPUとの親和性は区々である。最も簡単で

GPUとの親和性が高いのは、対角スケーリング

であり、これは前処理行列を 
1 1M D− −≈  (4)

で与える方法である。ここで Dは Aの対角行列で

ある。この方法はしかし、収束性において十分と

は言い難く、多くの問題で殆ど収束しない。やや

実用的なのは、SORや多項式前処理である。特に

多項式前処理は、古くからベクトルプロセッサで

使われており、次のように与えられる。 
1 1 1 1 1

1 1 1 1

0

( ) ( )

( 1) ( ) ( )k k

k

M D N D I D N

D D N D I D N

− − − − −

∞
− − − −

=

= + = +

= − ≈ −∑
(5)

ここで、Nは Aの非対角行列である。この前処理

は単純な行列・ベクトル積のみで実施できるため

GPUにおいて効率的な演算が可能である。但し、

収束性にやや問題があるため、広範囲の計算問題

を解くような汎用シミュレータにはあまり適して

いない。 

 多項式前処理のように、近似的に逆行列を表現

する前処理手法は、それ以外にも AINVや

FSAI,bi-conjugationなどが知られている[13]。こ

れらの手法は、SORや不完全 LUとは異なり、明

示的に逆行列を表現しており、前処理演算が GPU

上で効率的に行える点から興味深い性質を有して

いる。しかし、不完全 LUよりも fill-inの要素が

多くなる傾向があることと、適切な fill-inの場所

を特定することが難しいこと、更に近似逆行列自

体を生成する処理時間も大きいことから[13]、不

完全 LU前処理が収束しない場合を除いて、それ

ほど応用例が多くないようである。 

 この他に、実用的な前処理手法として、不完全

LUやMultigrid法が知られている。特に不完全

LUは最もポピュラーな前処理手法であり、本稿

でも後にこの前処理を用いた事例について報告す

る。一方で、Multigrid法は粗い格子を階層的に

用いてオーダーNの収束性を実現した興味深いア

ルゴリズムである。但し、非構造格子の場合には、

構造格子のように幾何学的に粗い格子が求まる訳

ではなく、疎行列 Aの隣接グラフと非ゼロ要素の
値から求められる[14]。一般にこの処理には時間

が掛かる。特にデバイスシミュレーションでは

Gummelの外部反復毎に非ゼロ要素の値が変動

するため、毎回の格子生成が必要となる。このた

め、デバイスシミュレーションへの適用は処理時

間の面で難しいことが考えられる。 

 

表 1 前処理手法の種類 

前処理手法 スレッド

並列化 

収束性 

対角スケーリング ○ 弱い 

Gauss-Seidel, SOR △ ある程度弱い 

不完全 LU △ 強い 

Multigrid △ 強い 

近似逆

行列 

Polynomial, 

Chebyshev 

○ SOR より弱いか同

程度 

AINV ○ ILU より弱いか同程

度。 FSAI ○ 

bi-conjugation △ 

 
6. 混合精度演算を用いた結果 

数年前は倍精度演算器を備えた GPUボードが

なく、一方で GPUの単精度演算性能が高いこと

から、GPU側で単精度演算を行い、CPU側で倍

精度演算を行う混合精度演算を用いた研究が行わ

れている[15]。理論的なアイディアは CPUでもま

だ倍精度演算が高価だった時代に既に提案されて

おり[16]、近年再びその概念が注目されている。 

 



実用アプリケーションへの GPGPUの適用－デバイスシミュレータ Advance/DESSERT における高速化 

76 アドバンスシミュレーション 2010.11 Vol.5 

(double precision)
do while( ){

solve  (single precision)
(double precision)
(double precision)

}

r b Ax
r b

Ay r
x x y
r r Ay

ε
= −

>

=
= +
= −

 

図 5 混合精度演算アルゴリズム[16] 

 

表 2 多項式前処理・混合精度演算による比較 

演算精度 

ポワソン方程式 

自由度：76,727 

(CG) 

電流連続方程式 

自由度：40,080 

(BiCGSTAB) 

反復 

回数 

計算 

時間 

反復 

回数 

計算 

時間 

CPU 

倍精度 
423 4.92 秒 380 4.17 秒

CPU-GPU

混合精度 
465 0.81 秒 1,341 0.86 秒

(CPU:Core2Duo6300, GPU:GeForce9800 GT) 

 
現在においても廉価な GPUでは倍精度に対応

しておらず、単精度演算のみが可能である。また、

倍精度対応のボードでも単精度演算の方が演算性

能は高い。そこで、試しに Advance/DESSRTか

ら生成される疎行列と 1次の多項式前処理を用い

て、GPU-CPUによる単精度/倍精度の混合精度演

算と CPUのみによるフル倍精度演算との比較を

行った。その結果が表 2に示されている。ここで、

GPUとして単精度演算のみが可能な NVIDIA 

Geforce 9800GTを用いた。また CPUもごくあり

ふれた Intel Core2 Duo 6300を利用している。こ

の結果では、ポワソン方程式の反復回数が倍精度

と混合精度で概ね同じであるのに対して、電流連

続方程式では、約 3倍の反復回数を要しているこ

とがわかる。このような違いは、行列の条件数に

依存しており、高い条件数では、単精度/倍精度の

混合精度アルゴリズムを用いた場合、フル倍精度

よりも収束性が大きく低下することが知られてい

る[17]。表 2に示すように反復当たりの処理時間

は混合精度演算が有利であり、安価な GPUでも

演算速度自体は速いことがわかる。但し、収束性

の観点でいえば、この方法は汎用シミュレータ向

けのアルゴリズムではない。 

 
7. 不完全 LU 前処理を用いる上での困難と Fermi

によるベンチマーク 

次に収束性と効率性に優れ、実用的なアプリケ

ーションに広く使われている不完全 LU分解を用

いた計算事例について紹介する。この手法はしか

し、前処理の過程において並列化の難しい逐次的

な前進代入・後退代入を含んでいるという欠点を

持っている。これを克服する 1つの方法として、

行列を生成する元になる解析領域を複数の小領域

に分割し、個々の小領域の演算を各 CPUで計算

する領域分割法と呼ばれる方法がある。この方法

は並列化の効率を上げるため、ある程度の領域サ

イズが必要であり、クラスター型ワークステーシ

ョンのような個々のコアのメモリリソースが大き

な計算機環境に向いている。 

その一方で GPUでは、極めて多数のスレッド

を同時に起動でき、超並列計算が可能である反面、

各スレッドに割り振られるメモリ量に限りがあり、

領域分割法による各小領域の演算を GPUのスレ

ッドに割り当てることには適していない。この他

に、行列要素の並び替えを変更することで前進・

後退代入の並列化を実現する手法がある。この手

法では、行列の節点を複数のグループに分割し、

ループ処理を用いて順次各グループ内で並列計算

を実行する（図 6参照）。CUDAではカーネル関

数を用いてグループ内の並列化が実現できる。こ

こで各グループ内における計算は、行列・ベクト

ル積に相当する。グループ数が少ない程（つまり

同じグループに含まれる節点数が多い程）、並列化

の同期点が少なくなるため計算効率は上昇する。

その一方で一般的に、グループ数が少ない程、共
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役勾配法の収束性が悪化することが知られており

[18]、その分多くの演算が必要になる。 

ここで取り上げる並び替えの手法は、修正され

たCuthill-Mckeeオーダリング法[18]（以下MCM

オーダリングと略記。）であり、収束性が最適とな

るグループの分割を自動で行うことができる。こ

こで重要な点は、この分割には行列 Aの隣接グラ

フだけが使われる点にあり、メッシュの変化がな

いデバイスシミュレーションにおいては、初回の

メッシュデータ読み込みだけこの並び替えを行え

ばいい点にある。 

この並び替え手法を用いて倍精度演算対応ボー

ド Tesla C1060と Tesla C2050(Fermi)による計

算を行った。その結果を図 8に示す。比較のため、

単体の CPUによる結果も載せておく。CPUのみ

の計算では、特に並び替えを行っておらず、メッ

シュデータの読み込みによって定まる自然な順序

づけが使われている。ベンチマークに用いたダイ

オードの例では自然な順序づけと、MCMオーダ

リングによる共役勾配法の収束性は殆ど変わって

いない。ベンチマークで用いた不完全 LUの共役

勾配法は Advance/DESSERTのリリース版に搭

載している次の対角 ILU(0)を用いた。 
1( ) ( )M D E D D F−′ ′ ′= + +  (6)

ここで D’は、不完全 LU分解の過程で容易に得

ることができる対角行列であり、E,Fはそれぞれ

行列 Aの上三角、下三角行列である。この形を用

いると、Eisenstat trickにより、共役勾配法の反

復における前処理時間を隠蔽することができる

[9]。また、D’を求める際に次の対角シフト処理 
diag( )A A Aα← +  (7)

を行うことで収束が加速される[19]。ここでα～

0.01程度の定数である。CPUとして、8MBもの

キャッシュを積んだ Intel Xeon 5540を使用した

（表 3参照）。 

CPUと GPUの結果を比較すると、メッシュデ

ータの読み込みや内部幾何処理、行列要素生成、

GPUへのデータ転送などのオーバーヘッドを含

めた全体の計算時間は、CPUのみよりも GPUを

用いた方が数倍速い結果が得られている。また、

各方程式の計算時間を抜き出して比較した結果を

図 9に示す。共役勾配法の 1ステップ当たりの前

処理回数は、ポワソン方程式で 1回、電流連続方

程式で 2回であり、後者の方が GPUによる並列

化の恩恵を受けやすい結果となっている。 

 
forward_substitution () { 
   for( i=0; i < ngroups; i++ ){ 
      parallel_group_kernel ( i ); 

} 
} 

図 6 オーダリング手法による 

前進代入の並列化擬コード 

 
表 3 倍精度ベンチマークの内容 

項目 内容 

ベンチマーク

対象 

N-I-P ダイオード(図 7) 

解変数 電場、電子・正孔濃度分布 

解法 ICCG(ポワソン方程式)、ILU-BICGSTAB(電

流連続方程式) 

オーダリング

法 

CPU:ナチュラルオーダリング、 

GPU:修正されたCuthill-Mckeeオーダリング

計算環境＊ CPU：Xeon E5540 (2.53GHz), GPU：NVIDIA 

Tesla C1060, C2050 

演算器 CPU,GPU 共に倍精度演算器を使用 

線形方程式の

収束条件 

デバイスシミュレーションの実用精度に合わ

せた（ポワソン方程式：1E-15, 電流連続方

程式：1E-20）。 

（*ハードウェア提供：ソルテック・ソリューションデザイン株式

会社 殿、株式会社エルザジャパン 殿） 
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