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1. はじめに 
 半導体デバイスは 60余年前の点接触トランジス
ターの動作に始まり、1970年代以降、集積回路
(Integrated circuits)技術の発展により急速な進歩
を遂げて来た。半導体デバイスの進展は固体物性理

論と工学の融合の上に成り立った産業である。加え

て、技術の進展と高度化を支えるにあたり第 3の研
究手法と言われる計算機シミュレーションが活躍

した分野でもある。計算機が廉価で高速、大容量化

し、且つパーソナル化した今日、計算機シミュレー

ションも日常的手法となってきている。本書ではデ

バイスシミュレーションの基礎から最近の応用ま

でを述べてみたい。手法の主体は実用的流体モデル

とし、超微細デバイスにおける準バリスティック伝

導機構のモデリングや流体モデルと馴染みにくい

トンネルモデリング等、流体モデルの限界を伸ばし、

高度な設計ツールとする施策について考えたい。 
 

2. デバイスシミュレーションの基本式 
 半導体産業における技術の向上は材料、プロセス、

デバイス、回路、システムの各分野での弛みない進

歩の賜物である。本書ではデバイス設計の為のシミ

ュレーション技術にスポットをあてる。 
 デバイスシミュレーションは大別すると 
1．電子を荷電粒子とみなしニュートンの運動方程

式に基づき追跡するモンテカルロ法シミュレー

ション(粒子モデル)と 

2．電子の集合とその運動を連続流体とみなしてボ

ルツマン方程式に則りモデル化する流体モデル 
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に 2分化される。前者は電子のミクロな運動を追跡、
解明することに有利であるが、計算時間が長く掛か

る欠点がある。後者は電子をマクロな集合体と捉え

デバイス動作の全体像を解明するのに有利である

が、電子のミクロな運動や分布状態を単独では準備

できない。つまり、高度なシミュレーション技術を

実用化するには 2つの手法を相補的に活用するこ
とが賢いアプローチとなる。本書では実用性の観点

から、緒言で述べた如く流体モデルを中心に実用的

モデリングについて述べて行く。 
 

2.1. ボルツマン方程式 
 電子の集団としての分布関数を fとするとき 
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と記載され、ボルツマン方程式と呼ばれる。ここに

vは速度ベクトル、mは質量、Fは外力である。 

 電子の運動はボルツマン方程式の第 0次、1次、
2次のモーメントから 
1) 物質保存則 --- 電流連続の式 --- 
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2) 運動量保存則 
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3) エネルギー保存則 
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として記述される。 

 一方、外力 Fは電場 Eであり、電界はポアソン

方程式の解である静電ポテンシャルΨより 
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として与えられる。ここにε は誘電率、ρ は空間電

荷密度を現す。 

 半導体内のキャリアは電子とプラスの電荷をも

った正孔により構成される。正孔の運動方程式はそ

の密度を pとするとき、電荷の符号が逆転している

ことを除けば、式(2)-(4)と同様な形式で与えられる。
電荷の正負を考慮して空間電荷密度は 

)( pnNNq AD +−−=ρ  (6)

で与えることができる。ここに qは素電荷、NDと

NA はドナー不純物、アクセプター不純物濃度であ

る。式(2)-(6)ならびに正孔の運動方程式を自己無撞
着に解くことにより半導体内部の電子・正孔の挙動

を詳細に解明可能である。 

 

2.2. 実用的アプローチ 
 定式化は既に述べたが、全ての方程式を数値解析

することは非現実的である。特に運動量保存式は速

度がベクトルであり、式(3)を展開すればテンソルと
なる。ここで、式(3)の意味するところを考えてみる。
まず、或る時間経過した後の平衡状態を考え、時間

微分項を零とおく。また、速度の 2次の項(v∇v = ½
∇v 2)も小さいので、第 1近似として無視する。外

力 Fは電場 Eであるから式(3)は 
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となる。これを速度ベクトル vdについて解けば 
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を得る。ここに、μ n(w)と D n(w)は電子エネルギー(w) 

の関数で表現される移動度と拡散係数で、 
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で与えられる。式(9)、(10)を使って電子の流束ベク

トル Jnを表現すると 
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となる。電子温度が格子温度と等しく且つほぼ一定

とすると、式(10)の右辺第 3項は消去され 
nDn nnn ∇+= EJ μ  (12)

となる。式(12)はドリフト－拡散(DD)モデルと呼ば
れる流体モデルである。DDモデルは電流密度を電
界から直接算出可能と言う使い易いモデルであり、

最も実用性の高いアプローチである。しかし、極短

チャネルデバイスで起こる準バリスティック伝導

(速度－電界関係における非局所性)のモデル化に

不向きである。 

 これに対し、エネルギー保存則から求めた電子エ

ネルギーを用い、速度を式(8)より算出する手立てを
考えてみる。速度ベクトルの式を数値解析すること

に比べ圧倒的に計算時間を節約可能である。速度の

2乗の項を無視できる範囲であれば、準バリスティ
ック伝導に対しても実用的手段となる。このモデリ

ングをエネルギー保存式に由来してエネルギーバ

ランスの頭文字をとってEBモデルと名付けておく。
但し、このモデルでは運動量ならびにエネルギー緩

和係数を事前に求めておく必要がある。その為には

モンテカルロ法モデルが必要且つ有効である。本章

序論で｢2つの手法を相補的に活用｣と述べた由縁で
ある。 

 

2.3. 緩和係数の算出 
 緩和係数を求めるにはモンテカルロ法モデルが

必要となる。具体的には或る電界 Eの中で 1電子を
ニュートンの運動方程式に従って運動させる。但し、

或る時間内で散乱、緩和プロセスを受けさせる。散

乱から散乱までの時間、散乱・緩和の物理的プロセ

スの発生する確率を乱数により模擬する。電子が陰

極から陽極まで到達したら、次の電子を陰極から放

出し散乱・緩和の確率過程を繰り返させる。電子の

飛行を数千回、数万回繰り返すことでマクロな緩和

係数が見えてくる。運動量緩和係数は 
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3. 準バリスティック伝導の解析 
3.1. シリコンにおける緩和係数 
 シリコンMOS反転層に閉じ込められた擬 2次元
電子ガス(Two-Dimensional Electron Gas: 2DEG)の緩

和係数をバルク中のそれと対比し、モンテカルロ法

により求めた例を図 3.1と 3.2に示す。図中、記号
(E┴)で表示されている値がMOS反転層の閉じ込め

電界強度である。バルク中の電子(正孔)の緩和係数

がエネルギー(w)と不純物濃度(NI)の 2変数関数 
),( Ibulk Nwfr =  (16)

となることに対し、MOS反転層内の電子のそれは

閉じ込め電界強度(E┴)を加えた 3変数関数 
),,( Iinv NEwfr ⊥=  (17)

となることに注意を要する。 

 図 3.1と 3.2を見て特徴的なことは運動量・エネ
ルギーいずれの緩和係数も低エネルギー側では反

転層中の緩和係数がバルク中のそれよりも大きい

ことである。これは電子の散乱確率がエネルギーの

状態密度の終状態に比例することによる。つまり、

2次元状態に量子化された電子の状態密度がバルク
中(3次元自由電子)の状態密度と大きく異なること
に依存している。逆に、高エネルギー側ではバルク

中の緩和係数が擬 2次元電子ガスのそれよりも大
きく、バルクの散乱機構がMOSFETを形成しても
支配的になることを物語っている。 

 電子エネルギーの高低とMOSFETデバイス動作
機構との関係を考えてみる。MOSFET の動作は強
反転層が形成されても、図 3.3に示される如く、ド
レイン近辺では空間電荷制限電流と呼ばれるバル

ク的動作機構が存在する。反転層形成領域と空間電

荷制限電流が形成される領域の分離点が所謂ピン

チオフ点である。 
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図3.1 シリコン中電子の運動量緩和レート  
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図3.2 シリコン中電子のエネルギー緩和レート  
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図3.3 MOSFETの断面構造図と動作機構  
 

 図 3.1と 3.2に現れた緩和係数のエネルギー依存
性と図 3.3に示すデバイス動作の相関を考えると次
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のことが分かる。 
1) 電子エネルギーが低く、MOS反転層の緩和係数
がバルク中のそれよりも大きいエネルギー領域は

デバイス動作ではピンチオフ点よりソース側の反

転層形成領域に該当する。 
2) 電子エネルギーが高く、MOS反転層の緩和係数
がバルク中のそれよりも小さいエネルギー領域は

デバイス動作ではピンチオフ点よりドレイン側の

空間電荷制限領域の伝導に該当する。 
 上記 1)、2)の特徴を纏め、MOSFETデバイス内
部全体に渡る緩和係数を表現すると 

( ) ( )[ ]Ibulkinv.max w,N, f,Nw,Ef r I⊥=  (18)
と言う包絡線関数を得ることができる。 ピンチオ
フ点と言う概念はシミュレーション結果を見て定

義できる結果情報であり、シミュレーションを行う

時点で明確なものではない。従って、デバイス全体

に渡って物理基本式を数値解析するシミュレーシ

ョンを行うには、式(18)のような全体を見渡すこと
のできるモデル化が必要不可欠となる。式(18)によ
る包絡線関数は 2つの値の内、いずれか大きい方を
採用すると言う単純なアルゴリズムであるので、大

型のシミュレーションに便利なモデル化である。 
 

3.2. 緩和係数の高精度・簡易モデル 
 電子(正孔)のエネルギー状態を知り、速度をエネ
ルギーの関数として式(8)より求めるには、エネルギ
ーと運動量の緩和係数を事前に求めておく必要が

ある。式(18)が包絡線関数と言う簡単な表式であっ
ても、その中身は 3次元関数となっている。モンテ
カルロ法を使って多次元データを作ることは非現

実的である。そこで、何らかの現実的方策（簡易化）

が必要となる。 
 散乱・緩和機構の物理現象を考えてみる。まず、

不純物散乱は弾性散乱でエネルギーの散逸を伴わ

ない。従って、エネルギー緩和の過程では不純物濃

度依存性は消失する。式(18)で表現される緩和係数
の内、エネルギー緩和係数(rw)から不純物濃度の項
(NI)が消去され、 

( ) ( )[ ]w, fw,Ef rw bulkinvmax. ⊥=  (19) 
と 1次元、簡略化される。 

 これに対し、バルク中の運動量緩和は不純物濃度

に大きく依存する。但し、反転層内 2DEGの緩和
レートは不純物濃度に依存するものの、大きさは小

さい。従って、運動量緩和係数(rm)も 
( ) ( )[ ]Ibulkinvmax. N,w, fw,Ef rm ⊥≈  (20)

と 2次元データ構造になる。 
 式(19)、(20)いずれもデータ構造は 2次元に簡素
化される。それでも、緩和係数をモンテカルロ法で

準備することは非現実的である。一方、図 3.1と 3.2
を見て気付くことは、反転層内電子の緩和係数のエ

ネルギー依存性は閉じ閉じ込め電界強度(E┴)パラ

メータに対し相似形を成していることである。先に

述べた如く、散乱の終状態が反転層内電子の状態密

度に依存し、状態密度は主に閉じ込め電界により決

定されるからである。そこで反転層内電子の緩和係

数については、運動量・エネルギーいずれに関して

も 
( ) )()(inv whEgw,Ef ×≈ ⊥⊥  (21)

と近似可能になる[1]。 
 バルク中の電子の運動量緩和係数はエネルギー

が低い領域では不純物散乱が強く作用し、結果、低

電界移動度は不純物濃度に逆比例の関係を示す。一

方、高電界中のホットな電子は不純物濃度に依存せ

ず、速度飽和を示す。これはエネルギーの高低にお

ける支配的散乱機構が異なることと、両機構が独立

事象であることに特徴[2]がある。この結果、バルク
中の運動量緩和係数についても 

( ) )()(Ibulk vwN,wf λν ×≈  (22)
という 1次元関数の集合による近似が可能となる
[1]。式(21)と(22)のような 1次元展開ができればモ
ンテカルロ法を利用して精度の高い緩和係数を容

易に取得可能となる。 
 
3.3. 極微細 MOSFETの準バリスティック伝導解析 
 式(20)、(21)にて表現される緩和係数をモンテカ
ルロ法で求め、2.2節で述べた EMモデルによりバ
リスティック伝導を解析した例[1]を紹介する。まず、
素子構造を図 3.4(a)に示す。ソースとドレインに
extension領域をもった LDD (Lightly Doped 
Drain)構造である。 
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図 3.4 極微細MOSFETの準バリスティック解析 

(a) 構造図 (b) 電流－電圧特性  出典[1] 
 
 EBモデルで計算した電流－電圧特性を多粒子モ
ンテカルロ法と比較したのが同図(b)である。連続流
体EBモデルによる解析結果は多粒子モンテカルロ
法と良好な一致を見せており、EBモデルの妥当性
を示していると言える。また、多粒子モンテカルロ

法計算時間が長いことを考慮すると、EBモデルが
実用的アプローチであることを理解できる。 
 
4. トンネル効果のモデリング 
4.1. 量子補正ポテンシャルの導入 
 トンネル効果は或る確率で壁を貫通する確率波

の現象で、古典的流体モデルとは馴染まない。しか

し、量子力学を用いて輸送問題を解くことは、特に

構造をもった 2次元、3次元問題には実用性から離
れてしまう。そこで、Feynman et al, [3] により導

入された量子ポテンシャルを導入する。新たに導入

するポテンシャルを量子補正と呼ぶことにする。 
 量子補正の方法は次のように表現される。まず、

垂直にそびえるポテンシャルの壁から電子が受け

る量子力学的な反発力は、実効ポテンシャル 

( ) ( )[ ]dxxxexpxx~
/d

2
0

2

0 )( −−⎟
⎠
⎞

⎜
⎝
⎛= ∫ αϕ

π
αϕ (23)

により表現される。ここに、dは次元数、α は電子

温度の関数で、次式により与えられる。 

2

6 eB
* Tkm

=α
 

(24)

ここで Si/SiO2界面を考えてみると、ϕ(x)は伝導帯の

底を現わすポテンシャル、つまりステップ状の不連

続性をもった関数である。これに対し、量子力学的

実効ポテンシャルは式(23)のようにガウス関数を
乗算して得ることができる。結果、ステップ関数的

に変化していた伝導帯の底は滑らかな関数に変換

されることになる。滑らかな関数表示は数値解析に

も適したモデルである。 

 式(23)によるモデリングの解析例を Si/SiO2 界面

にとって図 4.1に示す。Siと SiO2の伝導帯の不連続

量(ΔEC)は約 3.1 eVある。Feynman et al, [3] により
導入された量子化補正ポテンシャルは図に見られ

る如くステップ状の変化を緩やかな変化に変換し

ている。デバイスシミュレーションの立場からは収

束性を改善するものであり、流体モデルと量子効果

を繋ぐ有効なモデリングである。 

 
4.2. ヘテロ界面への応用 
 Si/SiO2 界面だけでなく異なる材料が接触する境

界面では、一般的にヘテロ構造となる。まずはじめ

にギャップ幅の広い材料がギャップの狭い材料に

挟まれた場合を想定する。図 4.2にバンド構造と量
子補正されたポテンシャルを示す。電子濃度がワイ

ドギャップ領域で連続的に減少していくことが分

かる。このような構造に対し両側から電圧を印加し

た場合の電流－電圧特性を図 4.3に示す。構造が対
称なので、電流－電圧特性も正負対称である。しか

し、電流－電圧特性が非線形な特性を示している。

ヘテロ構造の導入に伴う非線形性の創生となって
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いる。なお、電流の絶対値は移動度の値に依存する。

ここでは一定の値を仮定して計算した例を示した

ものである。補正ポテンシャルの導入により、テロ

界面を貫通する電流を容易に計算可能とさせた意

義は大きい。 
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図 4.1量子補正ポテンシャルの適用例 

 
 次に図 4.4(a)に示すような 1段へテロ構造とヘテ
ロ界面を通過する電流－電圧特性の解析結果を同

図(b)に示す。ヘテロ界面を流れる電子流にとって右
から左方向と、左から右方向でポテンシャル障壁の

効果が異なり、結果、電流－電圧特性に非対称性が

発生する。ここでは伝導帯の底の不連続量(ΔEC)を

パラメータとして電流－電圧特性を解析した。不連

続量(ΔEC)の増大に伴い、逆方向電流が流れ始める

しきい電圧が大きくなることが分かる。電流－電圧

特性だけを見ていると、あたかもショットキー障壁

ダイオードの順・逆方向電流と逆耐圧特性を見てい

るようで、興味深い結果である。 

 図 4.2あるいは図 4.4(a)に示したヘテロ構造にお
ける障壁高さは特定の材料を仮定したのではなく、

むしろ仮想値である。いかなる材料も何らかのバン

ド構造を有するから、ここで仮定したテロ構造は最

も一般的な複数層材料構造と言える。電気的特性評

価は最も簡易で非破壊の評価法である。もし非線形

な電流－電圧特性が得られた場合、ヘテロ構造を想

定しバンド不連続量を逆推定してみることも材料

特性を解明する上で有効な方法となるのではない

だろうか。 
 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7
1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
1.E+12
1.E+13
1.E+14
1.E+15
1.E+16
1.E+17

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
1.E+12
1.E+13
1.E+14
1.E+15
1.E+16
1.E+17

nm

電
子
電
位

(V
)

電
子
密
度

(c
m

-3
)

電子密度

 

図 4.2 ワイドギャップ層を挟んだヘテロ構造 
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図 4.3 ヘテロ構造(図 4.2)の電流－電圧特性 

 
5. まとめ 
 デバイスシミュレーションとは材料定数とデバ

イス構造を基に、電気的特性（電流－電圧特性）を

解析する手段である。本書で流体モデルに基礎をお

く古典的手法から出発して、超微細デバイスで顕著

になる準バリスティック伝導に対する高精度簡易

モデルと流体モデルとは馴染みにくいトンネル効

果、量子効果のモデル化を述べて来た。古典的流体

モデルが幅広く活用できるモデルであることを御

理解頂ければ本書を準備した者として幸いである。 
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図 4.4 1段ヘテロ構造(a)と電流－電圧特性(b) 
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