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1. 緒言 

巨大分子の振る舞いを正確にシミュレートする

ことは現在の計算化学研究の大きなテーマの 1つ

である。対象としては、生体中の蛋白質のような

ポリペプチド鎖や、ポリ塩化ビニル・ポリエチレ

ンのような合成高分子材料など多岐にわたる。近

年の計算機能力の著しい発達によって、このよう

な巨大分子の計算が盛んに行われるようになった。

しかしながら、このような大規模な分子構造や物

性を解明する試みはまだ発展途上である。例えば、

蛋白質の構造をアミノ酸配列だけの情報から完全

に予想することは現在もまだ不可能で、既知の蛋

白質構造の情報を利用したホモロジーモデリング

が蛋白質立体構造予測の主流である。また、高分

子材料や生体高分子系においては、AMBER・

CHARMM等の経験的な分子力場関数による分

子動力学計算を活用して分子構造物性や動的挙動

の研究が行われているが、本格的な計算を行おう

とすると計算コストは決して低くはない。さらに、

高分子凝集体となれば分子の大きさがマイクロメ

ール以上のオーダー（メソ領域）となり、ここで

の振る舞いを知ることが重要となる。このオーダ

ーになると原子分子レベルの計算を実行すること

がほぼ不可能であり、さらなる簡素化（粗視化）

が必要となる。このように巨大分子の現象を理論

計算で解明することは現在もなお非常にチャレン

ジングな課題である。このような難題に取り組む

ことによって、これまで表面上のみに表れていた 
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巨大分子の物性の本質を知る手掛かりになり、新

たな機能材料設計の指標に活用できると期待され

ている。 

巨大分子の計算に使われる分子力場は電子の振

る舞いを力場パラメータに閉じ込めているので、

分子力場計算では電子が直接関与する現象（化学

反応、電荷移動など）を正確に調べることは難し

い。このような電子の挙動を調べるには、量子化

学計算が必須である。しかしながら、量子化学計

算は分子力場計算に比べると遙かに計算負荷が高

いため、従来の量子化学計算手法をそのまま巨大

分子系に適用することは難しく、大規模系に適し

た理論が必要である。フラグメント分子軌道

(FMO, Fragment Molecular Orbital) 法[1, 2]は

巨大分子系の量子化学計算に対応した理論のひと

つで、現在も基礎理論研究が精力的に進められて

いる。当社では FMO法計算が可能な量子化学計

算プログラム ADBS (Advance/BioStation)の販

売・サポートを行っている[3]。本稿では FMO法

の概要と ADBS新バージョンの機能および合成

高分子の FMO法計算事例を紹介する。 

 
2. フラグメント分子軌道(FMO)法の概要 

FMO法は、分子系を小さな原子グループ（フ

ラグメント）へ分割し、フラグメントに関する量

子化学計算より、分子系全体のエネルギーを高精

度に求める理論である[1,2]。この方法のポイント

は分子系のフラグメントを量子化学計算が可能な

レベルまで小さく分割することにある。

Hartree-Fock (HF) 近似による量子化学計算の
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計算負荷は単純に分子系の大きさ（厳密には各原

子の軌道を表現する基底関数の総和）の 4乗に比

例する。従って、原子数が 1万を軽く超える蛋白

質のような巨大分子系の丸ごとの量子化学計算を

行うことは、近年の計算機能力の著しい向上があ

っても、極めて困難である。そこで、PCクラス

ターのような比較的コストの低い計算機で容易く

量子化学計算ができる程度の大きさ（数十原子規

模）のフラグメントに分子系を分割し、個々のフ

ラグメントの量子化学計算から精度の高いエネル

ギーを求めるのが FMO法計算である。FMO法

に似た理論としては DC法[4]・MELDA法[5]な

どが知られており、巨大分子系向けの量子化学基

礎理論は現在もなお発展段階にある。FMO法に

基づくと、N個のフラグメントで構成される分子

系全体のエネルギーEは、各フラグメントのエネ

ルギーの総和と多体間相互作用エネルギーの級数

展開による補正項によって表現される： 

E ൌ ෍ EI
ᇱ

N

Iୀଵ

൅ ෍ ෍ ∆EIJ
ᇱ ൅ ෍ ෍ ෍ ∆EIJK

ᇱ

Kவ௃Jவூ

N

IୀଵJவூ

N

Iୀଵ

൅ ෍ ෍ ෍ ෍ ∆EIJKL
ᇱ

Lவ௄KவJJவூ

N

Iୀଵ

൅ ሺhigher order nbody interaction energiesሻ  ሺ1ሻ 

ここで、EI
ᇱは I番目のフラグメントの環境静電ポ

テンシャルを考慮したエネルギーで、孤立したフ

ラグメント Iに対するエネルギーEIと I番目フラ

グメント周辺からの静電ポテンシャルVI（環境静

電ポテンシャル）[6]を用いて、 

EI
ᇱ ൌ  EI െ  VI     ሺ2ሻ 

と表現される。また、∆EIJ
ᇱ , ∆EIJK

ᇱ , ∆EIJKL
ᇱ はそれぞ

れ、Iと J番目フラグメントから構成されるダイ

マーフラグメントの 2体間相互作用エネルギー、

I・J・K番目フラグメントから構成されるトライ

マーフラグメントの 3体間相互作用エネルギー、

I・J・K・L番目フラグメントから構成されるテ

トラマーフラグメントの 4体間相互作用エネルギ

ーである。フラグメント Iと Jとの 2体間相互作
用エネルギー∆EIJ

ᇱは、 

∆EIJ
ᇱ ൌ EIJ

ᇱ െ EI
ᇱ െ EJ

ᇱ ൅ Trሺ∆۾IJ܄IJሻ ሺ3ሻ 

と表される。ここで、EIJ
ᇱは Iと J番目フラグメン

トからなるダイマーフラグメントの環境静電ポテ

ンシャルを考慮した電子エネルギーであり、

IJはそれぞれ܄IJと۾∆ IJダイマーフラグメントの
電子密度差行列[1,2,6]と環境静電ポテンシャルで

ある。3体間相互作用エネルギー[7]や 4体間相互

作用エネルギーは 2体間相互作用に比べてさらに

複雑な表現となり、一般的に n体間相互作用エネ

ルギーを求めるには n個のフラグメントから構成

される分子系のエネルギーと n-1体までの相互作

用エネルギー情報で記述することができる。多体

間相互作用エネルギーのレベルを高くすればする

ほど、分子系全体のエネルギー精度は向上する。

しかし、例えば 3体間相互作用を計算するには 3

フラグメントからなるトライマーフラグメントの

エネルギーを求める必要があるが、計算負荷は 1

フラグメントに比べると、HF計算で単純に 34=81

倍と飛躍的に増加する。計算するトライマーフラ

グメントの組み合わせの数は NC3∝ N3となり、2

体間相互作用の場合に比べると著しく計算すべき

数が増加する。このようなことから、蛋白質・無

機高分子のような数十～数千フラグメント規模か

らなる巨大高分子の場合、2体間相互作用エネル

ギーまでを考慮した FMO法計算(FMO2と呼ば

れる)が実用的である。当社の ADBSは FMO2を

サポートしており、FMO2レベルの分子系全体の

エネルギーEを 

E ൌ ෍ EI
ᇱ

N

Iୀଵ

൅ ෍ ෍ ∆EIJ
ᇱ

Jவூ

N

Iୀଵ

  ሺ4ሻ 

で求める。2体間相互作用エネルギー項は巨大分

子系になるとダイマーの数が飛躍的に増加するた

め、2体間相互作用エネルギーの計算が律速とな

る。そこで距離的にある程度離れたフラグメント

のダイマーについては、ダイマーの電子密度行列

 Jの直和表現۾Iと۾IJがモノマーの電子密度۾
IJ۾  ൎ  ሺ5ሻ     ۸۾۩I۾ 

で近似できるものとし、ダイマー間をクーロン相
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互作用近似する（dimer-es近似）[6]。この近似導

入によりダイマー計算の負荷が大きく下がり、実

用的な FMO法計算が可能となる。 

FMO法計算では分子内の共有結合した sp3炭

素原子をフラグメント分割の基点（BDA, Bond 

Detached Atom）に、分子内フラグメント分割で

きる[3]。BDAでの炭素原子の混成軌道の 1つと

核電荷を隣のフラグメントへ割振る射影演算子を

Hartree-Fock-Roothaan方程式に導入すると、共

有結合したフラグメント同士の分子軌道を個々に

局在化できるので個々のフラグメントで量子化学

計算が可能となる。BDAに利用する分子軌道とし

てはエタン分子の自然局在化軌道を用いる。この

導入により、蛋白質のようなポリペプチド鎖を 1

アミノ酸残基単位で分割したり、合成高分子を細

かくフラグメント分割することが可能となり、巨

大分子丸ごとの FMO 法計算が実用となっている。 

FMO法計算の大きな強みは、式(1)・(4)に表れ
る 2体間相互作用エネルギー∆EIJ

ᇱである。これは、

Iと Jフラグメント間の相互作用エネルギーの表

現であるが、この式には分子系全体からの環境静

電ポテンシャルの効果も含まれている。従って、

この値は分子系に実際に存在する場合の Iと Jフ

ラグメント間の相互作用エネルギー(IFIE, Inter- 

Fragment Interaction Energy)と解釈することが

でき、分子系の詳細な相互作用解析に活用できる。

FMO法計算の詳細な計算手順については文献

[8,9]を参照されたい。 

 
3. ADBS Version 3.2の新機能 

当社は文部科学省・東京大学「革新的シミュレ

ーションソフトウェアの研究開発（2005～2008）」

「イノベーション基盤シミュレーションソフトウ

ェアの研究開発（2009～）」へ参画し、フラグメ

ント分子軌道法に基づく量子化学計算プログラム

BioStationの開発にたずさわってきた。また、当

社はプロジェクト成果物 BioStationの販売権を

有しており、独自の機能改良やソフトウェアのサ

ポートを含めた ADBS (Advance/BioStation) と

いう商品名でソフトウェアを販売している。現在

の ADBSのバージョンは 3.2で、前バージョンよ

り新たに RI (Resolution of the Identity)法による

高速なMP2計算と密度汎関数理論(DFT)計算機

能を追加し、これらの FMO法による計算も可能

となっている。ここでは、これらの計算機能の理

論概要について紹介する。 

 
3.1. RI法による高速な MP2計算 

一般に、量子化学計算の中で最も計算時間がかか

るのは電子反発積分(pq|rs)が関与する積分計算

である[10,11]： 
ሺpq|rsሻ ൌ

׬  ׬ ψ୮ሺܚ૚ሻ  ψ୯ሺܚ૚ሻ ଵ
|૛ܚ૚ିܚ|

 ψ୰ሺܚ૛ሻ  ψୱሺܚ૛ሻ  dܚ૚dܚ૛ ሺ6ሻ  

ここで、ψ୮ሺܚ૚ሻは r1位置における p番目の電子の

（空間）軌道あるいは軌道を表現する基底関数で

ある。一般に個々の軌道はそれぞれ中心座標が異

なる。この積分には軌道が 4つ含まれるので、4

中心に関する積分（4中心積分）である。このた

めHF計算には 4つインデックスを含む多重ルー

プ計算が生じることになり、HF計算時間が分子

系の基底関数の総数Nの4乗に比例すると言われ

る理由となっている。RI法は、最も負荷がかかる

4中心積分計算を 3中心積分と 2中心積分計算に

近似的に分割し、4中心積分の計算負荷を N3へ落

とす手法である[12]。”Resolution of the Identity”

は明確な日本語訳がなく ”Resolution of the 

Identity法”・”RI法”とそのまま呼ばれることが

多いが、”identity operator”が単位演算子である

ことから数学的な意味を理解することは容易で、

これは完全正規直交基底{|i>}による単位演算子

の表現”closure”、1 ൌ ∑ |i ൐൏ ݅|୧ を意味する。RI

法の基本的な考え方を簡単に解説する。式(6)の 2

重積分における r1または r2座標の 2つの軌道の
積ψ୮ሺܚ૚ሻψ୯ሺܚ૚ሻまたはψ୰ሺܚ૛ሻψୱሺܚ૛ሻが含まれてい

るが、どちらか一方が 1つのインデックスをもつ
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補助基底関数の組{χஞሺܚሻሽで展開できれば、4中心

積分の 4つのインデックスは 1つ減った 3つのイ

ンデックスとなり、多重ループ計算の負荷が大き

く削減されることが期待できる： 

ψ୮ሺܚሻψ୯ሺܚሻ ൌ |pqሻ ൎ ෍ Cஞ
୮୯ χஞሺ

ஞ

  ሻ ሺ7ሻܚ

ここで問題になるのは係数Cஞ
୮୯
の決め方である。

もし補助基底関数{χஞሺܚሻሽが完全系をなしていれば、

Cஞ
୮୯
は厳密に一意に求まるはずである。しかしな

がら、有限個の補助基底関数で張られた空間（部

分空間）に対してはCஞ
୮୯
の取り方に任意性が生じ

る。そのためこの係数を決める方法がいくつか提

案されている。最終目的は補助基底関数展開した

(pq|rs)をできるだけ真の(pq|rs)に近づけること
である。そこで、残差関数R୮୯ሺܚሻを 

R୮୯ሺܚሻ ൌ ψ୮ሺܚሻψ୯ሺܚሻ െ ∑ Cஞ
୮୯ χஞሺஞ   ሻ   ሺ8ሻܚ

と定義したとき、Rpq(r)同士の 2電子積分

(Rpq|Rpq) (自己クーロン積分)が最小（極小）とな
るようにCஞ

୮୯
を決めると、補助基底関数で展開し

た(pq|rs)は真の(pq|rs)に近づくことが期待でき
る。この考え方でCஞ

୮୯
を求めると、 

൫R୮୯หR୮୯൯ ൌ ඵ R୮୯ሺܚ૚ሻ
1

ଵܚ| െ |ଶܚ R୮୯ሺܚ૛ሻdܚ૚dܚ૛,  

∂
∂Cஞ

୮୯ ൫R୮୯หR୮୯൯ ൌ 0   ሺ9ሻ 

より、係数Cஞ
୮୯
は 

Cஞ
୮୯ ൌ ෍ሺpq|χ୩ሻVஞ୩

ିଵ

୩

  ሺ10ሻ 

となる。ここでሺpq|χ୩ሻはψ୮軌道ψ୮・ψ୯と補助基

底関数χ୩による 3中心クーロン積分で、 
ሺpq|χ୩ሻ

ൌ  න න ψ୮ሺܚ૚ሻ  ψ୯ሺܚ૚ሻ
1

૚ܚ| െ ૛ሻܚ૛| χ୩ሺܚ  dܚ૚dܚ૛    ሺ11ሻ 

V୩୪
ିଵは補助基底関数χ୩・χ୪による 2中心クーロン積

分行列 

V୩୪ ൌ  න න χ୩ሺܚ૚ሻ  
1

૚ܚ| െ ૛ሻܚ૛| χ୪ሺܚ  dܚ૚dܚ૛   ሺ12ሻ 

の逆行列である。この補助基底関数展開を(pq|rs)

に代入すると、 

ሺpq|rsሻ ൎ  ෍ ෍ሺpq|χ୩ሻV୩୪
ିଵሺ

୪୩

χ୪|rsሻ  ሺ13ሻ 

となり、4中心積分が 3中心積分と 2中心クーロ

ン積分の積和で近似される。完全系ሼχ୩ሽを用いて

単位演算子を 

1 ൌ ෍ ෍
1

૚ܚ| െ |૛ܚ |χ୩ۄV୩୪
ିଵ

୪୩

 χ୪|      ሺ14ሻۃ

と表現(RI)すれば、式(13)は、(pq|rs)=(pq1|rs)

に式(14)を近似的に挿入した演算結果と同じであ
る。これがRI法と呼ばれる理由である。係数Cஞ

୮୯
を

決定する方法はこれだけではない。例えば、Rpq

のノルムฮR୮୯ฮが最小となるようにCஞ
୮୯
を求める

ことも、補助基底関数でψ୮ψ୯を精度高く表現でき

ると期待される： 
∂

∂Cஞ
୮୯ ൬න R୮୯ሺܚሻଶ dܚ൰ ൌ 0   ሺ15ሻ 

この場合、Cஞ
୮୯
は次のように求められる： 

Cஞ
୮୯ ൌ ෍ሺpq χ୩ሻS୩ஞ

ିଵ  ሺ16ሻ
୩

 

ここでሺpq χ୩ሻは 3中心の重なり積分で、
ሺpq χ୩ሻ  ൌ ׬  ׬ ψ୮ሺܚ૚ሻ  ψ୯ሺܚ૚ሻ χ୩ሺܚ૛ሻ  dܚ૚dܚ૛   ሺ17ሻ 

S୩ஞ
ିଵ は補助基底関数χ୩・χஞによる重なり積分行列

S୩ஞ ൌ ׬  ׬ χ୩ሺܚ૚ሻ  χஞሺܚ૛ሻ  dܚ૚dܚ૛   ሺ18ሻ 

の逆行列である。3中心重なり積分をሺpq χ୩ሻと記

号表現しておくと次のように都合がよい。得られ

た補助基底関数展開を(pq|rs)へ代入すると 

ሺpq|rsሻ ൎ ෍ ෍ሺpq χ୩ሻS୩୪
ିଵሺ

୪୩

χ୪|rsሻ ሺ19ሻ 

となる。ሼχ୩ሽが（非直交）完全系であれば、 

1 ൌ ෍ ෍|χ୩ۄS୩୪
ିଵۃχ୪|

୪୩

      ሺ20ሻ 

と表現できる。従って、式(19)は、RI表現・式(20)

を(pq|rs)=(pq 1|rs)へ近似的に挿入した結果と

同じである。式(19)の場合は 4中心積分が 3中心

クーロン積分と 3中心・2中心の重なり積分で近

似される。ただし、式(13)・(19)は異なる積分近
似表現であり、Rpqの量をどう料理してCஞ

୮୯
を如何
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に決めるかに依存することに留意する必要がある。

前者は RI法において V近似、後者は S近似と呼

ばれている（ADBSではV近似を採用している）。 

RI法には他にも SVS近似等がある[12]。いずれ

の方法も 4中心積分(pq|rs)をひとつ次数の低い 3

中心積分へ落としており、どれを利用するかは求

めたいエネルギー精度による。また、補助基底関

数は少ない数で効率的にψ୮ሺܚሻψ୯ሺܚሻに近い表現

をすることが、RI計算の高精度・高速化へつなが

る。そこで、ADBSでは補助基底関数として、同

じ原子の2つの原子軌道の積で展開するLCAD法

を採用している[13]。 

RI法を実際に HF計算へ適用する場合、クーロ

ン積分項への導入は容易である。しかしながら、

クーロン積分項へ RI法を導入しつつ、同時に交

換積分項へも導入することは難しい。クーロン積

分項のインデックスが(pq|rs)に対して、交換積分

項では(pr|qs)と軌道の中心が変わるため計算精

度が悪くなるためである。かといって、クーロン

積分と交換積分項を独立に RI法を適用すること

は、そのまま計算するよりもコストが高くなる。

これは(pq|rs)のインデックスの対称性によって、

クーロン積分と交換積分項のトータルで計算する

(pq|rs)の数が元もと大幅に少ないためである。こ

のように、RI法でクーロン積分と交換積分項の精

度を確保しつつ計算速度のパフォーマンスを上げ

ることは難しく、さらなる工夫を必要とする。一

方、Post HF計算である、電子反発項の 2次摂動

エネルギー補正 Møller-Plesset (MP2) 計算にお

いては、RI法の導入によりMP2計算(RI-MP2計

算)の高速化が可能である[14]。閉殻系の場合、

MP2補正エネルギーEሺଶሻは次のように記述され

る： 

Eሺଶሻ ൌ ෍
ሺia|jbሻሾ2ሺia|jbሻ െ ሺib|jaሻሿ

Ԗ୧ ൅ Ԗ୨ െ ԖୟെԖୠ୧୨ୟୠ

  ሺ21ሻ 

ここで、Ԗは分子軌道エネルギーで、i,j,a,bのイン

デックスは HF計算で求めた分子軌道で、i・jは

占有軌道、a・bは仮想軌道（非占有軌道）を示す。

(ia|jb)は基底関数のインデックスをμ・ν・λ・σと

して、 

ሺia|jbሻ ൌ ෍ ෍ ෍ ෍ Cµ୧C஝ୟC஛୨C஢ୠሺµν|λσሻ
஢஛஝µ

 ሺ22ሻ 

と表される。Cμi等は分子軌道係数、ሺµν|λσሻは 4

中心積分・式(6)である。式(21・22)は、MP2補

正エネルギーの計算コストが分子系の基底関数の

総数 Nの 5乗となる根拠になっている。式(21)は

RI法による式(14)を挿入した表現に変換できる： 

ERI
ሺଶሻ ൌ ∑ ሺ୧ୟ ଵ|୨ୠሻሾଶሺ୧ୟ ଵ|୨ୠሻିሺ୧ୠ ଵ|୨ୟሻሿ

஫౟ା஫ౠି஫౗ି஫ౘ
୧୨ୟୠ ൌ 

∑ ∑ ൫୧ୟห஧ౡሻVౡౢ
షభሺ஧ౢ|୨ୠ൯ሾଶሺ୧ୟ|஧ౣሻVౣ౤

షభ ሺ஧౤|୨ୠሻିሺ୧ୠ|஧ౣሻVౣ౤
షభ ሺ஧౤|୨ୟሻሿ

஫౟ା஫ౠି஫౗ି஫ౘ
 ሺ23ሻ୧୨ୟୠ୩୪୫୬  

式(23)では 4中心積分が 3中心積分に分解され、

MP2補正エネルギーの計算コストは基底関数の

総数Nの4乗へ下がる。RI-MP2法計算では式(23)

中の 3種類の 3中心積分ሺµν|χ୩ሻを求める必要があ

るが、そのまま式(21)を計算するよりも飛躍的に

計算コストは下がる。実際の RI-MP2計算スピー

ドは通常のMP2に比べると数倍～10倍程度の向

上が見込まれる。格段に計算効率が上がるので

RI-MP2計算は特に FMO法計算で有効である。

ሺµν|χ୩ሻは補助基底関数を求めた後に計算し、MP2

計算中はこれらの 3中心積分を繰り返し利用する

ので、計算機のメモリー上へ積分をすべて確保す

ることが高速化に重要である。ADBSはできるだ

け 3中心積分をメモリー上へ確保し、確保できな

い場合はディスクへ保存するアルゴリズムを採用

している。 

MP2計算は、HF計算では記述できない分散

力の要因となる電子相関効果を調べるための第一

次の補正計算である。蛋白質や合成高分子材料は、

水素結合やファン・デル・ワールス力のような分

散力が原因の相互作用が構造決定に重要な役割を

もっており、MP2計算はこのような分子系には必

須の計算となっている。さらに、芳香環や炭化水

素基をもつリガンドと蛋白質との結合において、

π–π相互作用や CH–π相互作用と呼ばれる弱い
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相互作用によって結合することが多くみられるが、

このような相互作用も分散力によるものであり、

MP2計算によって結合状態を詳細に解析するこ

とができる。ADBSの RI法による高速なMP2計

算は、FMO法計算にも対応しており、巨大分子

系の構造や機能の解明の大きな手助けになるもの

と思われる。 

 
3.2. 密度汎関数理論(DFT)計算 

 近年の低分子系における実践的な量子化学計算

では、密度汎関数理論 (Density Functional Theory, 

DFT) に基づいた計算がほぼデファクトスタンダ

ードになっていると言っても過言ではない。量子

化学計算で DFTがメジャーになったのは、HF法

では考慮できない電子相関効果を DFTで含める

ことができ、なおかつ、DFTの計算時間スケール

は HF計算とほぼ同等という点にある。実際、

B3LYPのような DFT計算で得られた分子物性・

化学反応は実験データとよく合うことが数多く報

告されている。ローコストでハイリターンな結果

が得られる DFT計算は特に実験研究者には喜ば

れ、実験結果を解釈する重要なツールとなってい

る。また、金属を含む分子系では DFT計算を行う

メリットが大きい。3d遷移金属では配位子場分裂

エネルギーは、通常の HF計算で得られる HOMO 

(最高占有分子軌道)と LUMO (最高非占有分子軌

道)とのエネルギー差に比べると格段に小さい。

MP2計算では、式(21)から分かるように、HOMO

と LUMO間のエネルギーギャップが小さいとエ

ネルギー分母が小さくなるので不安定な解に陥る

場合がある。実際、3d遷移金属を含む分子系で

MP2計算を実行するのは非常にチャレンジング

な課題で、安定解を得るだけでも一苦労である。

このような金属を含む分子系でも、DFT計算では

安定な解を得ることができるメリットがある。も

うひとつの DFT計算の大きなメリットは構造最

適化計算である。構造最適化の計算コストは HF

計算とほぼ同程度でありながら、DFT計算で得ら

れた数多くの分子の最適化構造は実験構造をよく

満足する結果が得られる。これは DFT計算の高精

度性を示すものであるが、このような DFT計算の

絶大な信頼があるからこそ、実験構造データがな

くても構造最適化計算した分子構造から様々な物

性の議論を行うことを可能としている。DFT計算

で得られるような分子構造や物性の実験データと

の一致は HF計算で得ることが殆どできない（一

部には HF計算が良い結果を得る場合もある）。現

在では、低分子系の量子化学計算は HF計算より

も DFT計算が第一次レベルの計算手法となって

いる。一方、MP2計算は先に述べたように電子相

関効果を含むので実験データとの一致が数多くみ

られる。MP2エネルギー計算は RI法を用いて高

速化が可能であるが、MP2レベルの構造最適化を

行うには式(21)の核座標に関する微分が必要で、

これには CPHFと呼ばれる非常に計算コストの高

い線形応答方程式が生じる。これを解くには数十

原子規模の比較的大きな分子となると計算時間が

極めて増加し、MP2の構造最適化計算は実用的に

は気楽に利用できるものではない。この点を考え

ると、巨大分子系における量子化学計算の構造最

適化には DFTが最も有望である。現在 ADBSの

DFT構造最適化機能を開発しており、FMO法計

算への対応を含めてリリース予定である。 

DFTの概要を簡単に紹介する。DFTは、基底状

態の電子密度からあらゆる物性が求められること

を立証したHohenberg-Kohn (HK) 定理を基礎にお

く多電子系理論である。HK定理の主張は次の 2

点である[15]： 

（１） 多電子系の縮退しない基底状態に存在す

る外場ポテンシャル Vは、ただ 1つの電子密度関

数ρによって決まる。すなわち、ρが決まれば Vが

決まり、Vが決まれば波動関数理論によってエネ

ルギーEなど、すべての物性が求められる。つま

り、基底状態の電子密度ρから系のすべてが決ま

ることを保証する定理である。 

（２） 系のエネルギーEを最小値にする電子密
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度ρは基底状態の電子密度ρ0そのものである。す

なわち、変分原理で求めた電子密度は、基底状態

の電子密度であることを保証する定理である。 

DFTは HK定理に基づいた理論であり、HF法

やMP2法などの波動関数理論とは全く異なった

理論体系である。しかしながら、実際の DFTの解

法に使われる Kohn-Sham法[16]は HF法計算との

類似点が多く、計算アルゴリズムの共有が可能で

ある。Kohn-Sham法は系の電子状態を、波動関数

理論と類似して、1電子軌道ϕiのスレイター行列

式で表現し、分子系のエネルギーEを電子密度関

数ρ(r)の汎関数である運動エネルギーTs・核引力

エネルギーHs・クーロン相互作用エネルギーVee・

交換相関エネルギー項 Excに展開する： 

E ൌ Tୱሾρሺܚሻሿ ൅ vୱሾρሺܚሻሿ ൅ Vୣୣሾρሺܚሻሿ ൅ E୶ୡሾρሺܚሻሿ  ሺ24ሻ 

ρሺܚሻ ൌ ෍ |φiሺܚሻ|2 ሺ25ሻ
i

 

このうち、運動・核引力・クーロン相互作用エ

ネルギー項については HF理論との類似より、電

子密度による汎関数型が与えられる： 

Tୱሾρሺܚሻሿ ൌ ෍ න φ୧ሺܚሻሺെ
1
2 ∆୧

୧

ሻφ୧ሺܚሻdܚ ሺ26ሻ 

vୱሾρሺܚሻሿ ൌ ෍ න െ
ZA

|RA െ |ܚ
A

ρሺܚሻdܚ   ሺ27ሻ 

Vୣୣሾρሺܚሻሿ ൌ
1
2 න

ρሺܚሻρሺܚᇱሻ
ܚ| െ |ᇱܚ dܚ dܚᇱ  ሺ28ሻ 

しかしながら、交換相関エネルギー項 Excの厳

密な汎関数型はまだ分かっていない。もし、交換

相関エネルギーの汎関数が厳密に求まれば、HK

定理が保証するように、電子相関効果を含めた厳

密な基底状態のエネルギーが求められるはずであ

る。この点で、DFT計算には HF計算を越えるポ

テンシャルを有している。HF理論は電子間のク

ーロン相互作用を平均場近似に置き換えるが、こ

の近似では電子間相互作用を厳密に評価すること

ができない。平均場近似を越えた電子間相互作用

の影響は電子相関効果と呼ばれている。電子相関

効果をまともに扱うには、MP2などの多体摂動

論・配置間相互作用理論・結合クラスター理論な

どの極めて計算コストの高い理論計算が必要とな

る。一方、DFT計算では式(24)から分かるように、

電子相関効果は交換相関エネルギー項 Excに含ま

れている。従って、電子相関効果が正しく含まれ

るような交換相関汎関数を用意すれば、HF計算

で含められない電子相関効果が加味された結果が

得られるはずある。しかも計算コストは HF計算

とほぼ同等であるから、巨大分子系の量子化学計

算において DFT計算が有望と言われる理由が分

かる。この点からも、交換相関汎関数の基礎研究

は非常に魅力的で奥深い。さらに、B3LYPのよう

な、HF理論の交換エネルギーを交換相関エネル

ギーに混ぜるハイブリッド型も提案されている。

このように、DFT計算はある意味、分子物性値の

実験データと辻褄が合うよう経験的に求めた交換

相関汎関数を用いる点があるため、”非経験的 (ab 

initio) “にシュレディンガー方程式を解く純粋な

波動関数理論とは趣が違う面がある。これが、一

部の量子化学理論研究者から”DFT計算は邪道”と

冗談っぽいイチャモンをつけられる所以である。

例えば多体摂動論計算では原理的に、摂動次数を

上げれば上げるほど高精度なエネルギー計算結果

が期待できるので、理論手法の展開が単純明快で

ある。波動関数理論で物理現象をより深く洞察す

るモチベーションは、より高く近似レベルを上げ

て計算することとなり、研究目的も実にはっきり

している。しかし、DFTではこのようなシステマ

ティックに近似を良くする決まった手順がなく、

単に交換相関汎関数自体を取り替えるしか選択肢

がない。どちらの汎関数がよいかは対象とした系

の実験事実を正しく説明するか否かしか判断材料

がない。このため、波動関数理論のような純然と

した計算に比べると DFT計算にはなんとももど

かしい気持ちが残る。しかし、実用的に DFT計算

を利用する研究者の立場で言えば、分子をモデリ

ングすれば、あとは他になにも情報を入れなくと

も、DFT計算すれば少々大きな分子系でも容易く
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構造物性が求まり、しかもそれが実験データをう

まく説明できたり・予測できたりするのであるか

ら、DFTは理論計算ツールとしてまさに正道にか

なっている。このような立場では、DFT計算で研

究対象の理解をより深めることができれば結果オ

ーライである。汎関数の由来とか本当の意味で”ab 

inito”かどうかは二の次話であることは、尤もな意

見とも言える。純粋な基礎理論研究者と実際の分

子計算を主とする理論計算研究者との間には

DFTに対する思い入れに、ある種のギャップがあ

るのかもしれない。ここで一言述べておくと、万

能とも思える DFT計算であるが、B3LYPのよう

な人気のある汎関数では多体摂動論計算の第一次

近似であるMP2計算に比べても電子相関効果が

十分考慮されていないことが知られている。従っ

て、DFT計算で実験データと辻褄の合わない結果

となれば、MP2レベルなどコストの高い計算を選

択することが次の一手となる。 

ADBSの DFT計算は、B3LYP・B971・SVWN・

PW91など、Gaussian・GAMESSなどメジャーな

量子化学計算ソフトウェアで使われる主要な汎関

数にほぼ対応している。FMO法計算(FMO-DFT)

へも対応し、さらにラジカルのような開殻分子系

の FMO-DFT計算(FMO-UKS)も計算可能である。

FMO-DFT計算は通常のDFT計算と違い SCF計算

の収束性が悪いが、これは BHandH汎関数を利用

することでほぼ回避することができることが分か

っている。また、相互作用エネルギー計算におい

ても BHandH汎関数は良好な結果が得られるため、

FMO-DFT計算を行う際は BHandH汎関数を用い

ることを推奨している[9]。 

交換相関エネルギー項は解析的に求めることが

できないため、数値積分で計算する必要がある。

ADBSでは数値積分計算にMura-Knolesの動径グ

リッド[17]ならびに Lebedevの立体角グリッド

[18]を採用している。 

 

4. 合成高分子材料の FMO法計算 

ADBSは生体高分子の FMO法計算用に開発さ

れた BioStationをベースとしており、蛋白質のよ

うなポリペプチド鎖・DNA・糖鎖については、立

体構造データより判断して、自動的にフラグメン

ト分割する機能をもつ。しかしながら、FMO法

計算は生体高分子に限った範囲に留まるものでは

ない。ADBSは分子内共有結合した sp3炭素原子

を基点にフラグメント分割をすることが可能であ

るので、生体高分子だけでなく数多くの高分子へ

FMO法計算が適用可能である。当社は材料設計統

合システム(Advance/Material Design System)を開

発しており、分子モデリング、分子動力学・粗視

化分子動力学・量子化学計算・第一原理バンド計

算などを含む統合プラットホームをリリースする

予定である。ここでは、汎用合成ゴムとして知ら

れるポリブタジエンをターゲットとして、合成高

分子の FMO法計算のエネルギー精度検証を紹介

する。 

ポリブタジエン(polybutadiene)は、1,3-ブタジエン

(CH2=CHCH=CH2)の重合によって得られる合成

ゴムである。タイヤ・ボールなど数多くの工業製

品に利用され、汎用性のある安価なゴムとして知

られている。まず、ポリブタジエンに多く存在す

るトランス 1,4-ブタジエンの 6量体(図 1)を計算し

た（表 1） 

 

 

図 1 トランス 1,4-ポリブタジエン 6量体構造 

 
FMO法計算との比較のため、通常の量子化学
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計算も行った(表 1のConventional)。計算化学は、

波動関数理論計算に HFとMP2計算、DFT計算

の汎関数に B3LYPと BHandHを用いた。通常の

量子化学計算では、MP2計算は HF計算よりも約

3 hatree下がっており、MP2補正でよりエネルギ

ーが低くなっていた。これは電子相関効果が考慮

された結果、エネルギー精度が上がったと考える

ことができる。一方、DFT計算 B3LYPでは–1015 

hartreeとMP2計算に比べてエネルギーが低いが、

BHandHでは–1007 hartreeとHF計算よりも高くな

った。DFT計算のエネルギー値は交換相関汎関数

に依存するので、エネルギー値は HF/MP2と DFT

では直接比較できないことを示している。トラン

ス 1,4-ポリブタジエン 6量体を通常の量子化学計

算と FMO法計算のエネルギー差は HF・MP2・

DFTいずれも 0.1m hatree (0.1 kcal/mol以下)と

ほとんど差がなく、FMO法計算は非常に高精度

なエネルギー値を与えることが分かった。 

 

表 1 トランス 1,4-ポリブタジエン 6量体の通常

の量子化学計算(a)と FMO法計算(b)のエネルギ

ー。c通常の量子化学計算と FMO法計算のエネル

ギー差。基底関数は 6-31Gを用いた。 

トランス 1,4-ポリブタジエン 6量体 

電子エネルギー / hartree 

Conventionala FMOb ΔEc (kcal/mol)

HF –1008.510419 –1008.510348 –0.000072 (–0.045) 

MP2 –1010.848067 –1010.848015 –0.000052 (–0.032) 

DFT(B3LYP) –1015.707276 –1015.707164 –0.000112 (–0.071) 

DFT(BHandH) –1007.499185 –1007.499056 –0.000129 (–0.081) 

 
構造変化によるエネルギー変化の傾向を調べる

ため、この分子の 1つのブタジエンを cis型に構

造変形し（trans型 5量体＋cis型 1量体）、同様

の計算を行った（表 2）。トランス型のポリブタジ

エンをシス型にすると、通常の量子化学計算では、

電子エネルギーが 4 ～ 8 mhartree (2.5～5.4 

kcal/mol)増加し、トランス型よりもシス型のほう

がエネルギー的に不安定な構造であることが分か

った。これは HF・MP2・DFTいずれも再現して

おり、トランス型とシス型のエネルギー変化は電

子相関効果による影響は小さいことを示している。

これらのエネルギー変化の傾向は、FMO法計算で

も極めて高精度に再現しており、ポリブタジエン

の構造変化による影響は FMO法計算でも十分検

証可能であることを示唆した。 

ポリブタジエンの通常の量子化学計算と FMO

法計算とのエネルギー誤差の程度を、生体高分子

の場合と比較することは興味深い。ストランド構

造をもつグリシン 6量体（図 2）の計算結果を表 3

に示す。グリシン 6量体の通常の量子化学計算と

FMO法計算のエネルギー差 ΔEは 1.2 ～4.3 

kcal/molとなっており、ポリブタジエンの結果(ΔE 

< 0.1 kcal/mol)と比べると、FMO法計算のエネル

ギー精度は悪い。 

 

表 2 Trans5 + cis1型ポリブタジエン 6量体の

通常の量子化学計算(a)と FMO法計算(b)のエネ

ルギー。c通常の量子化学計算と FMO法計算のエ

ネルギー差ΔE。基底関数は 6-31Gを用いた。 

Trans型 5量体+ cis型 1量体 

電子エネルギー / hartree 

Conventional FMO ΔE (kcal/mol)

HF –1008.501867 –1008.501810 –0.000057 (–0.036) 

MP2 –1010.841274 –1010.841236 –0.000038 (–0.024) 

DFT(B3LYP) –1015.700090 –1015.699990 –0.000100 (–0.063) 

DFT(BHandH) –1007.495079 –1007.494969 –0.000111 (–0.069) 

 

しかしながら、グリシン 6量体のエネルギー誤

差はたかだか数 kcal/mol程度であるので、化学反

応を扱うようなエネルギーの大きさに比べれば十

分高精度であり、FMO法計算による精度は十分実

用的である。この結果はむしろポリブタジエンの

ようなシンプルな炭素結合をもつ高分子の FMO
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法計算では、蛋白質のペプチド結合よりもさらに

高精度なエネルギーを得られるということを示す

ものである。これらの結果から判断すると、ポリ

ブタジエンの FMO法計算は通常の量子化学計算

とほぼ同様の物性が得られると期待されることが

分かった。FMO法計算は生体高分子だけでなく、

合成無機高分子系の材料設計への応用展開が今後

期待される。 

 

図 2 グリシン 6量体の構造 

 

表 3 グリシン 6量体の通常の量子化学計算(a)

と FMO法計算(b)のエネルギー。c通常の量子化

学計算と FMO法計算のエネルギー差ΔE。基底

関数は 6-31Gを用いた。 

グリシン 6量体 

電子エネルギー / hartree 

Conventional FMO ΔE (kcal/mol)

HF –1316.286284 –1316.281455 –0.004829 (–3.030) 

MP2 –1318.842187 –1318.835319 –0.006868 (–4.310) 

DFT(B3LYP) –1324.042534 –1324.044940 +0.002406 (+1.510) 

DFT(BHandH) –1315.133200 –1315.131316 –0.001883 (–1.182) 
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