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 日本は世界で有数の地震国であり、特にフィリピン海プレートが沈みこんでいる海溝である南海トラ

フでは 30年以内に高い確率で発生することが予測されている。地震の発生によって、地表がどう動き、
地盤内部がどのようなひずみを受けるかを解析する手法を検討し静的地震動解析システムとして開発

した。このシステムは大規模並列高速処理機能を持ち、3次元の広域地盤の解析も短時間で行うことが
できる。本報ではまず解析手法について解説する。ついで、本システムで求めた均質地盤領域の変位解

を岡田の理論解と比較して、解析手法の精度を検証するとともに、南海トラフを含む広域地盤における

地盤変動解析に適用することにより、システムの有用性、実用性を検証した。 
 
1. はじめに 

 日本近海は 4つのプレート（ユーラシアプレー

ト、北アメリカプレート、太平洋プレート、フィ

リピン海プレート）が集結する場所である。プレ

ート間では地震が発生するが、このタイプの地震

はほぼ周期的に発生することがわかっており、特

にフィリピン海プレートが沈みこんでいる海溝で

ある南海トラフでは 30年以内に高い確率で発生

することが予測されている。 

 政府の地震調査研究推進本部によると、今後 30

年以内の発生確率が想定東海地震が 87％、東南海

地震が 60～70％、南海地震が 50％程度と予測さ

れている。 

 一方、地震と火山噴火の連動性が疑われるケー

スが過去に数例知られており、南海トラフにおけ

る東海、東南海、南海の巨大地震と、富士山噴火

との関連を探る研究プロジェクトも文部科学省で

立ち上げられた。 

 富士山では、1707年の宝永噴火が巨大地震の

49日後に始まった例がある一方、地震後も沈黙を

保ったり、逆に地震の前に噴火したりしたことも

ある。巨大地震の震源域となる海底のプレート（岩 
*アドバンスソフト株式会社 技術第 5部 

5th Technical Division, AdvanceSoft Corporation 

板）と富士山のマグマだまりは地理的に近く、プ

レートのひずみの力が伝わるなど何らかの関係は

あると考えられている。地震と火山を地下で起き

る物理現象として一体的にとらえる見方が強まっ

ている。 

 このような情勢を鑑み、ここでは、プレート間

断層を震源とする地震が火山周辺などの地盤に及

ぼす変位や応力の変化を具体的に評価できる解析

手法を検討し、実際の地震断層滑りの影響を解析

するシステムを開発した。 

 
2. 解析概要 

 本解析手法としては、火山などの地形や局所的

な地殻構造の効果を適切に評価することを可能に

するために、差分法ではなく形状表現能力に優れ

る有限要素法（FEM）を用いることとする。 

 地震は断層滑りにより引き起こされる。断層滑

りは体積変化を伴わないせん断変形であり、大規

模な地殻の変形を引き起こす。断層滑りによる力

は合力も合トルクも零となり、互いに大きさが同

じで符合の異なる１対の力として表現される。こ

れは split node方法の活用により表現することと

する。 

一方、合理的な計算時間で計算することは広域
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地盤を扱う大規模地震動解析において必須の技術

であると考えられる。 

従って、地震動解析をする際の断層を split 

node方法で扱う既往の論文の記述部分を参考に

して、そのアルゴリズムを構造解析プログラム

Advance/FrontSTRに組み込むことで 3次元地震

動解析を取り扱えるようにする。上記プログラム

は静的な方程式の解法について直接法のみならず、

共役勾配法（CG法）を具備しており、大規模並

列計算機能により大規模モデルも高速に解析でき

る。 

 また、システムには、断層面を構成する要素生

成処理、地球内部構造の自動組入れおよび無限要

素の追加開発など、地震動解析を FEMで解く際

に必要となる機能を組み込んでいる。 

 以降にプレート運動に伴う応力場変動評価手法

の検討およびその解析結果について報告する。 

 
3. 解析手法 

 本開発コードで用いられる有限要素法による解

析手法について示す。 

 

3.1. 微小変形線形弾性静解析 

 ここでは、微小変形理論に基づく弾性静解析に

ついての定式化を示す。応力・ひずみ関係として

線形弾性を仮定している。 

 
3.1.1.  基礎方程式 

 固体力学の平衡方程式、力学的境界条件、幾何

学的境界条件（基本境界条件）は次式で与えられ

る。 

 ここにσ は応力、bは体積力、nは境界上の法

線ベクトル、 tは表面力、uは変位、u は境界変
位、V は全体領域、 tS は力学的境界、 uS は幾何

学的境界を表す。 

微小変形問題におけるひずみ・変位関係式は次

式で与えられる。 
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 また、線形弾性体での応力・ひずみ関係式（構

成式―Hookeの法則）は、次式で与えられる。 
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(5)
εσ D=  (6)

ここに、Dは弾性マトリックスである。 μλ, は

Lame定数を表し、質量密度 ρ 、P波と S波の速

度から求められる。 

( ) 222 2 SS VVV
P

ρμρλ =−=  (7)

 
3.2. 仮想仕事の原理 

基礎方程式(1)～(3)と等価である、微小変形線形

弾性問題についての仮想仕事の原理は、次式のよ

うに表される。 

∫∫ ∫ +=
V

T

V S

TT dVubdSutdV
t

δδδεσ  (8)

uSonu 0=δ  (9)
式(6)を式(8)に代入し、式(8)は次式のように表さ

れる。 

∫∫ ∫ +=
V

T

V S

TT dVubdSutdVD
t

δδδεε  (10)

 
3.3. 定式化 

仮想仕事の原理式(10)を有限要素ごとに離散化

して次式を得る。 

e e e
t

T T T

e e eV S V
D dV u tdS u bdVε δε δ δ∑ ∑ ∑∫ ∫ ∫= + (11)

要素ごとに、要素を構成する節点の変位を用い

て変位場を次式のように内挿する。 

 

Vinb 0=+∇σ  (1)

tSontn =σ  (2)

uSonuu =  (3)
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このときひずみは、式(4)を用いて次式のように与

えられる。 

BU=ε  (13)

ここに、 Bはひずみー変位マトリックスである。 
式(12)、(13)を式(11)に代入して、次式を得る。 
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式(14)は、次式のようにまとめることができる。 

FδUKUδU TT =  (15)
ここに 

∑ ∫=
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dVDBBK T  (16)
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e
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式(16)、(17)で定義されるマトリクスおよびベク

トルの成分は、有限要素ごとに計算し、重ねあわ

せることができる。 

式(15)が、任意の仮想変位δUについて成立するこ

とにより次式を得る。 

FKU =  (18)
一方、変位境界条件式(3)は、次式のように表され

る。 

UU =  (19)
式(18)を拘束条件式(19)のもとで解くことにより、

節点変位 Uを決定することができる。 

 
3.4. 離散化 

3.4.1. 六面体要素 

離散化に用いる要素の例として図 1に示すよ

うな 8節点立方体要素について示す。形状関数は、

次式を用いる。 
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ここに、 , ,r s tは正規化された座標内の評価点座標

を表す。 
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図 1 8節点局所立方体要素 

形状関数を , ,r s tにて微分を行うと、 1, ,8i = に

対して次式を得る。 
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マトリックス表現をすると、 
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アイソパラメトリック表示では、座標変換行列と

形状関数は一致するので、形状関数を , ,x y zにて

微分を行うと、 1, ,8i = に対して次式を得る。 
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ひずみー変位マトリックス [ ]B は、次式を表す 
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ここに、 iB は 8,,1=i に対して次式で与えられる。 
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剛性行列は 

dVDBBK
V j

T
iij ∫=  (26)

で与えられる。 

 
3.5. Split Node 方法による断層の導入 

3.5.1. Split Node方法 

 H.J. Meloshの論文[1]により有限要素法を用い

て地震動解析をする場合において split node 

technique で断層滑りのモデル化を実現できる

ことが確認されている。 

split node technique によれば、単一の節点に

対し、それにつながる要素によって異なる節点変

位を与えることができる。つまり断層面の上方と

下方で異なる変位を持つことができる。このこと

により解析対象物の全体剛性マトリックス、変位

ベクトルの形を変化させずに、地震断層の滑り変

位による影響を荷重ベクトルの変更のみで、処理

することができる。 

 従って断層滑りのために解くべき方程式の自由

度数を増加させる必要がなく、計算時間を増大さ

せない方法である。大規模な断層滑りに対して特

に効力を発揮すると考えられる。 

 アルゴリズムは以下のように示される。 

 図 2に示す 2つの要素を考える。要素①の節点

2、と要素②の節点１は全体剛性を組み上げた時

に同一節点となるが、それぞれ相異なる変位を持

つとする。 

 

図 2 要素における変位 

2点の変位を同一視するために、各要素におけ

る変位を以下のように表す。 

②②

①①

121

222

UUU

UUU
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 (27)

上式で
①

2U 、
②

1U が相異なる実際の変位を示す。

2U を全体に組み上げられた時の変位とし、 2U に

対する各要素における変位増分を
①

2UΔ 、
②

1UΔ
と表す。断層滑りを表すために

①

2UΔ 、
②

1UΔ に

すべり量の 1/2、(－1)×すべり量の 1/2を与える。 

変位増分の影響を荷重項として処理すれば、式

(28)となり全体の方程式を組み立てることができ

る。全体系での求解変位を 2U とし、各節点の変

位は図 3のように示される。 
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図 3 全体構造における変位 

3.5.2. 断層変位による等価節点力 

 断層の走向角（strike angle）θ 、傾斜角（dip 

angle）δ 、滑り角（rake angle）λおよび滑り変

位 0D は図 4に示すように定義される。一般的に

は構造の全体座標系は x軸をEast、y軸をNorth、

z軸を上方にとられる。 
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図 4 断層パラメータの定義 

 本報では断層滑りを表現するために、断層面上

に XY面を持つ断層座標系を以下のように定義す

る。 
 全体座標系をその Z軸周りに ( / 2 )π θ− 回転し

た後、この回転後の X軸周りでδ 回転し、その後

の Z軸周りにλ回転させて得られた座標系を断層

座標系とする。 

 式(28)における断層の滑り変位ベクトルは全体

座標系における表示であるので、ユーザーが入力

する断層座標系における滑りの変位ベクトルを全

体座標系に変換する必要がある。断層座標系から、

全体座標系への変換式は、式(29)のように定義さ

れる。 
[ ]UTTTu 123 ⋅⋅=  (29)

ここで、 
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である。 

 断層面は多数の有限要素の表面の集合として形

成される。従って断層面に所属する要素表面ごと

に要素番号と節点番号を抽出し、断層面に所属す

る要素節点を対象に等価節点力を計算する。例え

ば、断層面に所属する要素において節点 jが、断

層面に所属する場合は、節点 jの 3方向自由度の
滑り変位である 3 2juΔ − ， 3 1juΔ − ， 3 juΔ を入力データ

ファイルから読み込み、式(31)を実行する。同じ

要素内であっても断層に所属しない節点について

は実行しない。断層に所属する全ての要素節点の

等価力を計算したら、全体荷重ベクトルにアセン

ブルする。 

{ } [ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩
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Δ
Δ
Δ

−= −

−

=
∑

j

j

jn

ji
nnxij

fault
e

u
u
u

kF

3

13

23

1,
33

 (31)

等価節点力のイメージとして平面問題について示

せば図 5のようになる。 

① 

① 

②
1U
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② 
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断層面 ①
2UΔ2U

②
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fault tip

fault tip  

図 5 断層変位による等価要素節点力 

 
3.6. 無限要素 

 地盤は無限遠方まで連続しているが、有限要素

法では、このような開領域の取り扱いが困難であ

る。通常の有限要素法のままでは対象領域の外ま

で解析範囲を十分に広くとり、境界の影響を少な

くすることが考えられるが、それにより解析規模

が多くなり、計算時間や容量が膨大となり不合理

である。 

 従って開領域を扱うために、半無限境界を表す

要素として無限要素を採用した。地表面を除く構

造の水平方向および深さ方向の端部境界において

無限要素を設置する。以下に無限要素の一例とし

て、六面体要素の基礎方程式を以下に示す。 

 
3.6.1.  8節点六面体無限要素 

 Zienkiewicz[2]により静的な解析をする時の無
限要素の定式化がされている。局所座標ξ は無限

方向に拡張するとなる。 1ξ = + は、無限点を代表

する。 

3
4

2
1

7 8

65

I II

ξ

η

ζ

 

図 6 8節点無限要素 

 
図 6に示す線形無限要素に対して、座標変換は式

(32)に与えられる。 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]ξξζη
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(32)

式(32)を整理すると、式(33)になる。 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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N N N x N N N N x
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η ζ ξ η ζ ξ ξ
η ζ ξ η ζ ξ ξ
η ζ ξ η ζ ξ ξ

= + −
+ + −
+ + −
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(33)
ここに、 1N と 2N は、標準的な有限要素形状関数

である。 

( ) )1(
2
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2
1
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( ) )1(
2
1)1(

2
1

2 ηηηη −=+= iN  

( ) )1(
2
1)1(

2
1

1 ζζζζ −=+= iN  
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0
~N と 2

~N は、以下の式(34)で定義される。 
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式(34)により、以下の式を得られる。 

( ) ( )
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式(33)により、以下の式を得られる。 
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再整理すると、図 6の左側面の形状関数は、以

下の式(35)になる。 
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図 6の右側面の形状関数は、以下の式(36)により

定義される。 
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3.6.2. 定式化 

(a) 座標と変位変換 

 無限要素の座標変換は有限要素の座標変換と同

じで無限要素の形状関数から座標変換ができる。 
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局所から全体変位も推定される。 

( )

( )

( )∑

∑

∑

=

=

=

=

=

=

8

1

8

1

8

1

,,

,,

,,

i
ii

i
ii

i
ii

wHw

vHv

uHu

ζηξ

ζηξ

ζηξ

 (38)



4. 検証解析 

アドバンスシミュレーション 2010.11 Vol.4 107 

 
(b) ひずみ 

 無限要素のひずみは、次式で定義される。 

{ } { } [ ]{ }( ) ( )
, , , , ,

Te e

x y z xy yz yz
Bε ε ε ε γ γ γ δ= =  (39)

ここに、{ }( )eδ は要素の節点変位ベクトルである。 

{ } { }Te wvuwvuwvu 888222111
)( ,,,...,,,,,,=δ (40)

[ ]B はひずみー変位マトリックスである。 
[ ] [ ]8,21 ,, BBBB =  (41)

ここに、 
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(42)

 
(c) 応力 

無限要素の応力計算は、通常の有限要素と同じ

に次式で定義される。 

{ } { } )(]][[ eBD δσ =  (43)

 

(d) 剛性マトリックス 

仮想仕事の原理を無限要素ごとに離散化して、

次式(44)を得る。 
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ここに、 
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4. 検証解析 

4.1. 岡田理論解との比較 

4.1.1. 解析モデル 

 静的地震動解析システムの精度を検証するため

に、均質地盤を対象に断層滑りを与えた時の変形

を解析し、岡田の理論解 4)との比較を行った。要

素は原則として精度の良い六面体を使用するが、

断層面近傍には形状表現のため 4面体、5面体も

使用した。断層面の滑りは SplitNode機能で扱い、

半無限境界の処理は無限要素を使用した。 

まず有限要素メッシュのみのモデルの解析を実施

して、要素や SplitNode機能の精度を把握し、つ

いで無限要素を加えたモデルを解析して無限要素

の影響を把握する。 

解析条件を、以下に示す。 

地盤内部に断層滑りを与える 

（震央は地表面中央) 

傾斜角：δ＝30° 

すべり量：U1=0m，U2=1m，U3=0m 

断層の深さ：d=40km  

地盤規模：L=W=150km，250kmの 2ケース 

断層面規模：ｌ=w=50km 

地盤の材質：E=100GPa，ν＝0.25 

 
図 7に解析モデルを示す。要素分割モデルを図 

8に示す。 

 

図 7 均質地盤の解析モデル 
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(a) 150×150×75km 

 
(b) 250×250×150km 

図 8 要素分割モデル 

注) 無限要素は有限要素領域の側面および底面に

貼付した。無限遠点で変位＝0となる。 

XY方向のメッシュ幅は中央 100km×100kmで

6.25km、その外側では 12.5kmとしている。深さ

Z方向は地表面から 11.132kmまでは 5.5662km

ピッチ、そこから 40kmまでは 3.6084kmピッチ、

さらに 50kmまでは 5kmピッチ、それより下は

12.5kmピッチとしている。 

 
4.1.2. 解析結果 

 地表面変位の水平（Y）方向と鉛直（Z）方向成

分を震央を通る X軸方向ベクトル、Y軸方向ベク

トルにそって抽出し、理論解と比較して図 9に示

す。グラフ中で震央は 500kmの位置である。 
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Z方向変位 

図 9 地表面の変位 
（単位：変位－m，軸座標－km） 

 
 図中の変位ピーク値は両方向変位ともにモデル

化範囲によらず有限要素モデルと理論解とほぼ一

致していることがわかる。これにより開発システ

ムにおける静的地震動解析機能がほぼ妥当である

ことがわかる。 

 一方、Y方向変位のグラフに見られるように、

ピークから離れた裾野の部分ではモデル化範囲に

よって大きく挙動が異なっている。モデル化範囲

がモデル化範囲が小さくなるに従い理論解から離

れる傾向が見られる。これは有限要素のみのモデ

ルの場合は、モデル化範囲の端部を拘束している

ために端部変位が 0となる影響が表れたものであ

る。無限要素を用いた場合は変位のピークから離

れた裾野の部分でも理論解と比較的よく一致して

いることがわかり、無限要素の効果が確認できる。 
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4.2. 過去の研究事例との比較 

 開発システムの精度を実際の地盤を対象に断層

滑りを与えた例で検証する。ここでは南海地震を

対象に、吉岡等 5)によって発表された論文との比

較を行う。断層滑りにより発生した地表面変位の

解析結果を比較する。図 10に解析範囲を示す。

過去の研究事例にならって直方体領域（深さ 0～

150km）の地盤をモデル化した。地表面範囲の頂

点は、表 1の 4点である。 

 

表 1 解析地盤領域 

頂点 緯度 経度 

1 北緯 30.3度 東経 132.5度 

2 北緯 32.5度 東経 139.5度 

3 北緯 36.7度 東経 138.7度 

4 北緯 34.5度 東経 130.7度 

 

 

 

図 10 解析モデル 

 
 文献では地盤モデルの要素分割については、断

層として南海地震の 2個所、東南海地震の 1個所

が考慮された形状となっている。今回扱う断層滑

りは最も西側の震源のみであるが、できるだけ同

一条件で結果を比較するために要素分割は文献と

ほぼ同様なものとした。表 2に着目断層の諸元を

示す。図 11にも断層のパラメータを示す。 

表 3に材料定数を示す。 
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表 2 断層滑り諸元 

長さ

2L 

幅W 深さ

H 

走

行

角

θ  

傾

斜

角

δ  

すべ

り角λ

す

べ

り

量 

150km 70km 4km 20° 20° 116.6° 6m

H

λ

Z

Y

X

δ

 

図 11 断層諸元の幾何 
 

表 3 材料定数 

 区分 ヤング率

E(GPa) 

ポアソ

ン比ν 

1 地殻 32 0.25 

2 マントルウェッ

ジ 
47 0.30 

3 プレート 72 0.25 

4 アセノスフィア 67 0.25 

 
 境界条件としては地盤の側面および底面に無限

要素を張り付けている。従って無限遠点で変位が

0となる条件とした。 

 LL’を結ぶ線上の変位を抽出して文献値と比較

した結果を図 12に示す。 

 変位の全体的な傾向は良く一致しており、開発

システムの機能はほぼ妥当であると推定される。 
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図 12 地表面の変位分布 

 
4.2.1. 東海・東南海・南海地震震源域から富士

山までのモデル 

実際の広域な地盤領域、想定東海・東南海・南

海地震震源域から富士山周辺に至る地域（東西

953km×南北 777km×上下 100km）を解析対象

として、この領域内に想定する東海・東南海・南

海地震の断層面を組み込み、断層滑りが発生した

場合の応力場変動を評価した例について報告する。 

 地盤領域を表 4に示す。 

 

表 4 解析地盤領域 

 緯度 経度 

範囲 北緯30～37度 東経 130～140度 

 
着目する断層面は図 13に示す南海地震、東南

海地震、東海地震とする。断層面は各々均一なす

べり量を持つ 4つの四辺形領域として指定した。

表 5に断層面の諸元を示す。東南海・南海の断層

面の位置と走行角については文献から、東海の断

層面については中央防災会議の HPの中の一例を

引用した。 
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図 13 震源モデル 
 

表 5 断層滑り諸元 

断層 長さ 2L 幅W 深さ H 走行角θ 傾斜角δ すべり角

λ  

すべり量 

南海(西側) 150km 70km 4km 19.03° 20° 116.6° 6m 

南海(東側) 150km 70km 4km 19.44° 25° 116.6° 3m 

東南海 130km 70km 4km 30.57° 25° 108° 4m 

東海 149km 63km 10km 208° 15° 89° 2.85m 

 

 

 地盤の材質については、システム内蔵の地盤デ

ータベースから自動設定した。境界条件について

は地盤の四方の側面および底面に無限要素を張り

付け無限遠点で変位が 0となる境界条件とした。 

 解析モデルはモデラ―により自動生成しモデル

規模は以下のように設定した。 

 節点数：232,422  

 要素数：220,134（うち無限要素 18,000)  

 材質数：471 

 
地表面および各経度における地中断面のMISES

応力分布を次に示す。 

 

 
図 14  地表面のMises応力分布 

TOKAI 
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図 15 垂直断面におけるMises応力分布 

（上段；東経 135度 中段；東経 139度  
下段；東経 131.5度） 

 
5.  まとめ 

 本報では地震断層運動による地盤の変形・応力

を解析するために、火山などの地形や局所的な地

殻構造の効果を考慮するために形状表現に優れる

有限要素法に基づく解析手法について述べた。ま

た、この手法で実際に地盤変動解析システムを開

発し、地盤領域の解析を実施した。以下のような

成果が得られている。 

 

1)  領域外部からの影響を回避する境界条件につ

いて検討し、解析領域端部に設置する無限要

素機能を開発した。無限要素により解析領域

が狭い場合でも無限遠点での拘束となるため

ピークから離れた裾野の値分布が改善された。 

2)  本解析手法によるシステムを開発して従来の

研究事例との比較を行い、着目変位の分布が

比較的良く整合していることを確認した。ま

た実際の広域地盤の解析も行い、システムの

実用性を検証した。 

3)  開発システムは Advance/FrontSTRを使用す

ることで、大規模並列高速静的地震動解析が

可能となった。今後は断層運動による地震の

揺れ、地震前後にゆっくりと進行する変動な

どの動的解析に拡張していく予定である。 
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