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Application of an SPH (Smoothed Particle Hydrodynamics) Method to 
Volcanic Processes 
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 SPH（Smoothed Particle Hydrodynamics）法は粒子法の一種で、粒子の運動が連続体の変形や流動
と明示的に対応づけられることが特徴である。SPH法が混合物質の変形や流動に容易に対応できること
を利用して、マグマの上昇過程に関連する火山現象へ応用する可能性を検討する。特に、揮発性成分の

発泡や膨張の効果を含む特異な状態方程式、気相の体積が著しく増えたときの破砕の扱いなどについて

独自な方法を提案する。 
Key words: SPH method, particle dynamics, two-phase flow, magma, fragmentation 
 
1. はじめに 

 変形や流動を数値的に解析する手法としては、

差分法や有限要素法など、空間に固定した格子や

メッシュを用いる方法が多くの実績とともに確立

されている。しかし、このような伝統的な手法は、

マグマが岩石に貫入して地殻を突き抜け、地表に

噴出するような問題には適用が難しい。マグマと

岩石の境界は格子やメッシュを超えて大きく移動

するが、それに容易に対処できないからである。

一般に、複数の物質が関与して、その境界が大き

く変形したり移動したりする問題は、空間を離散

化の基礎とする伝統的な計算手法が苦手とすると

ころである。このような問題は、物質とともに視

点を移動させるラグランジェ流の扱いの方がやり

易いので、その考えに立つ粒子法がよく採用され

る。粒子法を使えば、異なる物質の境界は粒子の

初期配列によって自由に設定でき、粒子の運動と

ともに自動的に移動する。 

 粒子法の中で最もよく使われる個別要素法（ 
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DEM, Discrete Element Method）は、粒子間に

働く力を直接定義して、その相互作用のもとに運

動方程式を解く。具体的には、粒子間がバネやダ

ッシュポットなどでつながれると想定して、物質

の弾性や粘性を表現する。しかし、このような粒

子間力の物理的な意味は必ずしも明確ではなく、

連続体の弾性定数や粘性率とも直接関連づけられ

ない。粉体の流動や岩屑なだれなど、流れや変形

が実際に粒子によって引き起こされる場合は別に

して、連続体の解析に対する適用は定性的な域を

出ない。 

 それに対して、1977年に宇宙物理学の分野で開

発された SPH（Smoothed Particle 

Hydrodynamics）法[1]は、粒子の変形や相互に働

く力を連続体力学に沿う形で導入する。SPH法で

は、応力や歪など連続媒質の変形を定義する物理

量は粒子の分布から計算でき、弾性や粘性などの

連続体の性質は粒子の性質として組み込むことが

できる[2]。その意味で、SPH法は連続媒質の解

析に適した方法であると考えられる。現在までに

SPH法は工学を中心に各種の基礎研究や応用目

的に広く使われてきた。特に、自由表面を含む大

きな変形、強い衝撃の効果、複数の物質の相互作

用などの問題に対する適用例が多い。連続体力学
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との対応を意識した方法として、その後日本で

MPS（Moving Particle Semi-implicit）法が開発

された[3]が、ここでは実績の豊富な SPH法につ

いて述べることにする。 

 本稿で主に問題にするのは、2種類の物質が混

合するシステムを SPH法でどう扱うかにある。

岩石中のマグマの上昇など、多くの火山学的な現

象の解析でそれが中心的な課題になるからである。

2相流の扱い一般についてもいえることだが、混

合物質を SPH法でどう扱うかはまだ確立されて

いない部分があり、現在も様々な提案がなされつ

つある[4],[5]。ここでは、SPHの基本的な処理方

法以外には特別な仮定を設けずに問題を定式化す

る。例えば、種類の異なる粒子の間に特別な相互

作用は考えない。物質の種類の違いは、個々の粒

子の構成方程式を考えるときにのみ問題にされる。

更に、様々な性質を粒子に組み込むことによって、

気相を含む特異な状態方程式、破壊や破砕などの

現象も、粒子間に特別な相互作用を考えることな

しに対処する。 

 本稿は SPH法の初歩から記述を始める。SPH

法の基本的な枠組みはよく知られたものであるが、

その細部に関する理解の仕方や、数値計算におけ

る具体的な対処法には、本研究独自のものがある

からである。この一般論に続いて、著者によって

組まれた計算プログラムの概要が説明され、それ

を用いた簡単な計算例が示される。その中でマグ

マに溶解する揮発性成分の発泡や膨張の扱いにつ

いて議論される。火山現象に対する具体的な応用

については詳細に立ち入らず、SPH法の活用方法

についてのデザインを述べるにとどめる。火山学

的な議論の詳細よりも、同様な考え方で SPH法

を様々な問題にどう用いるかに、読者の興味があ

ると考えるからである。 

 
2. 計算方法 

2.1. 空間微分の扱い 

 連続体の基礎方程式の多くは空間座標の微分を

含む偏微分方程式によって記述される。SPH法の

特徴はこの空間微分の扱いにある[2]。空間座標ベ

クトル x = (x1, x2, x3)と時間 tの任意の関数
( )x,f t を、以下のように平滑化して近似しよう。 

∫ −=〉〈 '),'(),'(),( xxxxx dhwtftf  (1)

積分は考慮する空間全体にわたるものとする。平

滑化の重みを表わすカーネル関数 ( )x,w h は、原点

の周りの幅 hの範囲内でのみ大きな値をとるもの

を選ぶ。すなわち、(1)は関数 ( )x,f t を xの周辺の

値を用いて平均する。平均の機能を保障するため

に、カーネル関数には次の規格化の条件を課す。 

1),( =∫ xx dhw  (2)

幅 hが 0に近づくと、(2)の条件から高さは無限に
大きくなり、 ( )x,w h はディラックのデルタ関数

( )xδ に超関数の意味で収束する。そこで、この極

限では平滑化された関数 f は元の関数 f と厳密

に一致する。 hが有限のときには f と f は完全

には一致しないが、その差はここでは無視できる

ものとし、以下の扱いでは f と f を同一視する。

この仮定は SPH法の根幹に関わるものであるが、

その妥当性についてここでは議論しない。 
 カーネル関数 ( )x,w h は、xが hの範囲から十分

に離れたときには実質的にゼロになるので、(1)

の微分を部分積分することによって、次式が得ら

れる。 

∫ −−=
∂
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x
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i

i  

i
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更に高次の微分についても類似な式が得られる。 

 この数学的な基礎のもとに SPH法の粒子を導

入しよう。まず、連続体を適当に分割して、その

各部分に「粒子」を割り振る。粒子はその部分の

座標 x（もっと厳密に定義する必要があったら、

その中心や重心の座標）を粒子の位置として保有

する。連続体の流動や変形とともに、粒子も連続
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体の一部として移動し、その位置 xも変化する。

粒子に適当に番号をつけ、番号 nを割り振られた

粒子の位置を ( )1 2 3, ,n n n nx x x x= と書く。粒子の番号

nは、べき乗と紛らわしいが、座標を表す下付き

の添え字 i、 jなどと区別して、上付きの添え字

で表記することにする。場所と時間の関数として

定義される連続体の任意の物理量 ( )x,f t は、その

位置に割り振られた粒子 nの物理量とみなして

( ),n nf f x t= と書くことにする。 nf は一般に時間

tの関数である。この理解に従って、粒子 nの速

度成分 n
iv や応力成分 n

ijσ などが定義できる。 

 粒子 nに割り振られた連続体の体積を nV とし

て、(1)と(3)の積文を離散化すれば 

mnm

m

mn Vhwff ),( xx −=∑
 

mnm
i

m

mn

i

Vhwf
x
f ),()( xx −−=

∂
∂ ∑  

(4)

mに対する和は、実質的には近傍に存在する少数

の粒子からの寄与で決まる。その範囲を決めるの

が hである。 hの値としては、粒子間隔の数倍程

度の値を選ぶのが常識的である。(4) の右辺のよ

うに、カーネル関数を用いて計算される和をカー

ネル平均と呼ぶことにしよう。(4)の第 2式は、粒
子 nに割り振られた物理量 f の空間微分の表現で

ある。この式によれば、物理量の空間微分は、カ

ーネル関数の空間微分を用いて、周囲の粒子がも

つ元の物理量の分布から求まる。 

 ここまでの議論は暗に 3次元空間を想定したが、

SPH法を1次元や2次元の問題に適用する場合に

も扱いは同様である。すなわち、(1)～(3)の積分は

考慮する次元の積分と理解すればよく、(4)では nv

として粒子の占める長さや面積をとればよい。こ

の点に注意すれば、計算プログラムは次元をほと

んど意識せずに作成できる。カーネル関数は通常

球対称が仮定されて、距離だけの関数から導かれ

る。よく使われるのは、距離が 3 hより大きくな

ると完全にゼロとなる 5次式[2]で、ここでもこの

カーネル関数を採用する。その関数形を図 1に示

す。 
  

 

図 1 距離だけに依存する 5次の代数方程式で決め
られたカーネル関数 ( )w x とその微分 /dw dxのグラ

フ。 ( )x,w h を 1x x= 、 1h = として ( )w x と書く。 

 

2.2. 粒子の運動 

 連続体の運動方程式は、よく知られた以下の形

に書かれる。 

i
j j

iji g
xdt

dv
+

∂
∂

= ∑
σ

ρ
1  (5)

ここで ρ、 iv 、 ijσ は連続体の密度、速度、応力で

ある。 ig は連続体の単位質量あたりに働く実体力

（単位は加速度）で、ここでは重力を考える。2.1
節の定義に従って、粒子 nの密度 nρ 、速度成分 n

iv 、

応力成分 n
ijσ を定義すれば、(4)の第 2式を使って、

運動方程式(5)は次のように離散化される。 

i
mnm

j
j

m

m
ijn

n
i gVhw

dt
dv

+−−= ∑∑ ),(1 xxσ
ρ

(6)

(5)の左辺は連続体と一緒に動く視点に立つ時間

微分（ラクランジェ流の微分）なので、 (6)では

それをそのまま粒子の時間微分で置き換えた。 

(6)は粒子の運動を粒子間の相互作用の形で表現

しており、粒子の運動方程式とみなすことができ

る。 

 同様に、連続体の質量保存の式（連続の方程式） 
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から、粒子の密度変化を記述する以下の式が得ら

れる。 

mnm

i
i

m

m
i

n

n Vhwv
dt

d ),(1 xx −=∑∑ρ
ρ

 (8)

カーネル平均の計算で用いる粒子の体積 nv は、初

期体積と(8)で得られた密度変化から計算する。 

 応力を計算するための構成方程式は、物質の種

類や性質に依存する。粒子は元の連続体の種類や

性質をそのまま引き継ぐものと理解する。粒子が

粘性流体を表現する場合（このような粒子を流体

粒子と呼ぼう）には、粘性率ηと第 2粘性率ξ を

含むニュートンの関係式 
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に、状態方程式と速度勾配の表現に対応する次の

2式を代入して、粒子の応力 n
ijσ を計算する。 

]1[ −+= n
o

n

o
n Kpp

ρ
ρ  

( )j n m
j imi

v
v wx ∑

∂
= −∂

mnm Vh),( xx −  
(10)

粒子が弾性体を表現する固体粒子の場合には、ラ

ーメの定数λと μを含むフックの法則を時間で微

分した式 
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 (11)

を(10)の第 2式と組み合わせて用いる。この場合、

応力はこれを時間積分することで得られる。 

 (9)～(11)を用いて求めた各粒子の応力を、(6)や

(7)と組み合わせることで、ある時間ステップでの

粒子の位置、速度、密度から、次の時間ステップ

の状態を計算することができる。初期条件から出

発して、この手順を繰り返すことで、任意の時間

における粒子の状態が求まる。時間積分は通常陽

解法で実行するので、積分の時間刻みはクーラン

条件[6]を満たして、粒子間隔と音速の比より短く

選ばなければならない。 

 以下に述べる計算プログラムでは、カーネル平

均を計算する際に粒子の種類や性質を区別しない。

粒子の種類や性質の違いは、構成方程式を用いる

場合にだけ考慮される。例えば、固体粒子と流体

粒子が共存する系で、 (6)、(8)、(10)などで粒子

についての和をとるときには、固体粒子の寄与と

流体粒子の寄与を同等に扱う。固体粒子と流体粒

子の違いは、構成方程式として(9)と(11)のどちら

を選択するかを決める際にのみ考慮される。この

ような単純化によって、異なる粒子の境界付近で

は連続体の境界条件とのずれが生ずる可能性があ

るが、ここではそれに対して特別な対応をとらな

い。 

 
3. 計算プログラムの作成と運用 

3.1. 計算プログラムの作成 

 2節で述べた手順に従って、粒子の変形や流動

を SPH法で計算するプログラムを C++言語で開

発した。以下にその概要を述べる。並行して、計

算結果を図示するプログラムと、計算結果から特

定の粒子の性質などを抽出するプログラムも作成

した。一連のプログラムの使用法はホームページ

形式のマニュアルに書かれている。これらについ

て詳細な情報が必要な場合は、著者に問い合わせ

て欲しい。 

 図 2にプログラムを構成する関数の関係を図示

する。 

 
図 2. SPH法による計算プログラム sphplの構
造。プログラムを構成する関数は、4つのファイ
ル sphpl.cpp、sphfl.cpp、sphka.cpp、finpos.cpp
に分けておかれる。 
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ソース・コードは 4つのファイルに分割されてお

かれる。sphpl.cppファイルは、プログラム全体

を管理する関数と入出力を分担する関数から構成

される。sphfl.cppファイルには、粒子の状態や運

動を管理し計算する関数が含まれる。カーネル平

均の計算に関わる部分は、sphkl.cppファイルに

属する関数によって実行される。finpos.cppは粒

子の初期配列をいくつかの標準的なケースについ

て設定する関数群から成る。 

 プログラムの実行は sphpl.cppファイルにおか

れた関数mainから始まる。mainにより、まず関

数 contrlが呼ばれて、制御データを contrl.datフ

ァイルから読み込む。次に関数 inposが呼ばれて、

粒子の初期配列と初期状態が inpos.datファイル

を用いて設定される。その設定には、contrl.dat

ファイル中のパラメータの値に対応して、複数の

方法が選択でき、inpos.datファイルの形式はそ

の選択内容によって異なる。選択のひとつに、

inpos.datファイルに書き込まれたパラメータに

よって簡易に設定する方法があり、それに対処す

る関数群が finpos.cppファイルに準備されている。 

 制御データが読み込まれ、粒子の初期条件が設

定されると、関数 flameが呼ばれて、粒子系の次

元、粒子の間隔や分布範囲などが求められる。ま

た、関数 sparafと sparaが呼ばれて、sphfl.cpp

ファイルと sphkl.cppファイルに所属する関数群

のために、共有パラメータの値が設定される。こ

れらの準備が終わると、関数 caloutが呼ばれて、

粒子の運動と状態変化の計算が始まる。計算が進

行する過程で、計算結果は随時 result.datファイ

ルやmonit.datファイルなどに書き込まれる。計

算が終わると、継続計算のために、粒子の最終状

態が inpos_c.datファイルに書き込まれる。計算

の進行状況は、関数 consopによって consop.txt

ファイルに記録される。会話型でプログラムを実

行する場合には、同じ内容はコンソール上に刻々

と出力される。 

 各時間ステップにおける計算の制御は、calout

に呼ばれて関数 cflowが行う。cflowは関数 stress

を呼び、(9)式や(11)式に従って応力を計算する。

また、関数 pressを呼んで、状態方程式から圧力

を計算する。更に、粒子の速度変化（加速度）を

計算するために、関数 forceを呼んで運動方程式

(6)の右辺第 1項を求める。これらの結果を集約し

て、cflowは粒子の位置と状態の変化を計算し、

次の時間ステップに対応する粒子の新しい状態を

得る。この新しい状態が破壊や破砕の条件を満た

すかどうかの判定や、条件を満たした場合におけ

る破壊や破砕の処理は、関数 fractが行う。一連

の計算途上でカーネル関数やその微分の値が必要

になると、関数 kernelがそれを提供する。火山学

的な応用で使われる特別な機能は、関数 pressや

fractに準備される（第 4章参照）。 

 プログラムはパソコンの windows上でも大型

計算機でも実行できる。大型計算機で実行する場

合には、並列計算処理にも対応できるようになっ

ている。並列化への対処は、カーネル平均を計算

する部分についてなされ、全粒子の状態変数を共

有しながら、各粒子の計算を複数の cpuに分割す

る方式がとられる。並列計算で 32個以下の cpu

を使う場合は、計算時間がほぼ cpuに反比例する

割合で短縮され、1程度の並列化効率が達成され

た。cpuの数が更に増えると、並列化効率は落ち

るが、256個の cpuでも 0.3程度の効率が得られ

た。 

 

3.2. 浮力で上昇する円筒 

 作成したプログラムの実行例として、2次元の

長方形の容器に置かれた円筒状の物体が、浮力で

上昇する問題を考える。容器は最上部に近い位置

まで粘性流体で満たされており、流体の深部には

2次元の円筒状の物体が底から多少離しておかれ

ている（図 3左）。容器の大きさは横 48 m、縦 64 

mである。円筒状の物体は、弾性体の場合と粘性

流体の場合を考える。いずれの場合も、円筒の初

期密度は周囲の流体の半分なので、円筒は浮力を



3. 計算プログラムの作成と運用 

アドバンスシミュレーション 2010.11 Vol.4 91 

受けて浮き上がる。この初期状態を SPH法の粒

子で表現したのが図 3右である。各粒子の位置は

円で示す。粒子は 1.0 mの一定間隔で格子状に配

列され、円筒を表現する粒子、容器を満たす流体

粒子、容器を表現する固定粒子の 3種類に分けら

れる。使われた粒子の総数は 3095個である。各

粒子の物性は図中や図の説明に書かれているが、

いずれもマグマにほぼ相応する値である。なお、

円筒の位置は容器の中心から多少水平にずらして

ある。こうしておかないと、中心に位置する粒子

が対称性のために水平に動けないのである。 

 円筒を構成する粒子とその周辺の流体粒子は、

(9)や(11)に従って応力が計算され、運動方程式(6)

に従って位置を変えていく。この計算で、カーネ

ル平均は粒子間隔の 2.5倍以内の範囲に存在する

粒子にわたってとられた。容器を構成する固定粒

子は、運動方程式を無視して強制的に位置を固定

されるが、その近傍に存在する流体粒子の状態や

運動を計算するには、固定粒子も応力の値をもつ

必要がある。そこで、近傍の流体粒子と同じ粘性

を用いて、(9)から応力が計算される。カーネル平

均の計算の便宜のために、容器は 2列の固定粒子

で構成される。この計算で採用した数値計算の時

間 tの刻みは 2x10-4 sで、t = 0から 20 sまで計算

して、演算に要した時間は 32 cpuを用いた並列

処理で約 30分であった。 

 計算結果として、円筒が固体粒子で構成される

場合を図 4に、流体粒子で構成される場合を図 5

に示す。どちらも初期状態から 10sが経過したと

きの粒子の状態である。図の左は粒子の位置と速

度である。粒子の位置は円で示され、円の大きさ

の変化で初期状態からの密度変化を表すが、これ

らの場合には図から読み取れるほどの密度差は生

じない。各粒子の速度は、円の中心から引かれた

線分の長さと方向で表現する。右側の図は応力（表

面に加えた圧力の寄与を差し引いたもの）の分布

である。x-y平面内で応力成分を主軸の方向に分

解し、主軸の方向と主値の大きさ（薄い線は張力、

濃い線は圧縮力）を示す。空間スケール、速度と

応力の大きさは、各々の図の真上に書かれた線分

の長さで示される。 

 円筒が固体粒子で構成される場合（図 4）には、

円筒を構成する粒子は基本的には元の形を保って

上昇する。これは期待通りの結果であるが、よく

注意して見ると、粒子の配列は初期状態と同じで

はなく、細密充填になるように相互の位置をずら

している。同様な粒子配列の変化は、周辺の流体

粒子にも広く見られる。この点から見ると、粒子

の初期配列にも細密充填を満たすような配慮が望

ましそうである。周辺の流体の流れは、全体とし

ては円筒の上昇を埋め合わせるように分布する。

すなわち、円筒に引きずられて上昇し、両側で下

降する流れの傾向が読み取れる。しかし、個々の

粒子の運動は全体の傾向と必ずしも整合的とはい

えず、乱流的な様相がかなり見られる。ちなみに、

この系のレイノルズ数は 300程度である。応力の

分布については、大きな差応力（応力の非静水圧

成分）が円筒の内部にある固体粒子に集中するの

が見られる。 

 流体粒子で構成される円筒（図 5）は、帽子の

ように上側に膨らんで上昇する。初期の円筒の形

状は大きく変形し、各粒子はばらばらになりかか

っている。ここでも、流れが乱流傾向にあること

が読み取れる。同じ経過時間で比べた円筒の位置

は、固体粒子の場合より多少上にきており、全体

としての上昇速度が大き目であることが示される。

応力の分布には、固体粒子の場合のような円筒へ

の差応力の集中は見られない。 
 最初円筒の中心にあった粒子が、高さ y、上昇

速度 yv 、密度 ρ、圧力 pを時間 tとともにどう変

えたかを図 6に示す。3本の曲線の内、sは円筒

が固体粒子で構成される場合、fは流体粒子で構

成される場合で、これらは図 4と図 5に示された

計算事例に対応する。gとラベルがつけられた点

線は、円筒が揮発成分を含む流体粒子で構成され

る場合で、それについては次節で述べる。上昇速
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度の変化を見ると、円筒が固体粒子で構成される

場合は、上昇は加速を続けており、定常状態に達

する前に液面に達してしまう。どの計算事例にも、

速度や圧力に細かい振動が見られ、個々の粒子の

状態は必ずしもスムースに変化してない。 

 
 

 

図 2 2次元の容器内に置かれた円筒の浮力による上昇。 0t = における初期状態(左)とその粒子法による

表現(右)。容器の壁は 2列の固定粒子で表現する。円筒は初期密度が周囲の流体の半分に設定され、弾性

体（図 4）、流体（図 5）、揮発性成分を含む流体（図 7、図 8）の場合を考える。 

 

 

図 3 円筒が固体の場合の 10st = における粒子の位置と速度（左）および応力（右）の分布。円筒の初期

密度は周囲の流体の半分、体積弾性率は周囲の流体と同じ、ポアソン比は 0.25に設定した。 
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図 4 円筒が流体の場合の 10st = における粒子の位置と速度（左）および応力（右）。円筒の初期密度は

周囲の流体の半分、粘性率と体積弾性率は周囲の流体と同じに設定した。 

 

 

図 5 0t = で円盤の中心にあった粒子の鉛直座標 y、上昇速度 yv 、密度 ρ、圧力 pの時間変化。実線 s
と fは円筒が固体（図 4）と液体（図 5）の場合であり、点線 gは円筒が揮発性成分を含む流体の場合（図
6、図 7）である。 
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4. SPH法の火山学への応用 

4.1. マグマ中のガス成分の扱い 

 SPH法では、連続体の任意の性質は粒子の性質

としてそのまま解析に組み込むことができる。そ

の適用例として、以下にマグマ中のガス成分の扱

いについて述べる。 
 マグマには 2H Oや 2CO などの揮発性成分が質

量にして 1%前後溶解する。マグマが上昇して圧

力が下がると、揮発性成分は気相となって析出し、

マグマ中に気泡をつくる。マグマは気泡流となり、

2相流としての性質をもつ。気相は液相より圧縮

性がずっと高いので、マグマの上昇とともに気相

は著しく膨張して、マグマ全体の密度を大きく下

げる。そのために、マグマの上昇は加速する。気

泡の体積がマグマ全体の体積の大半を占めたり、

気泡の膨張が大きな歪を発生させたりすると、マ

グマの液体部分は破壊されて気泡流の枠組みが壊

され、気相の間にマグマの破片が浮く状態になる。

すなわち、マグマは気泡流から噴霧流に転移する。

この転移を破砕と呼ぶ。 

 破砕が起こるかどうかは、マグマが浅部までガ

ス成分を十分に保持できるかどうかにかかってい

る[7],[8]。多量のガス成分が逃げ出し、マグマが

気泡流の状態で出るのが溶岩流である。十分な量

のガス成分が保持され、マグマが破砕されて噴霧

流として噴出すると爆発的な噴火になる。その場

合には、噴霧流は大気中で噴煙や火砕流になって、

火山灰、軽石、スコリアなどの形で地面に堆積す

る。このように、噴火の形態を含めた数値シミュ

レーションには、揮発性成分の効果を取り入れる

ことが不可欠である。 

 
4.2. ガス成分を含むマグマの状態方程式 

 マグマ中で揮発性成分が発泡して気泡ができる

と、マグマ全体の密度は顕著な影響を受ける。気

泡を含むマグマの密度 ρは、その体積の合計がマ

グマ全体に占める割合（気相の体積分率、マグマ

の空隙率やボイド率）をψ として、以下のように

表される。 

gl ψρρψρ +−= )1(  (12)
ここで lρ は液相マグマの密度、 gρ は気相の密度で

ある。圧力 pがマグマ中で一様だとして、それら

を次式で近似する。 

)1(
l

ol K
p

+= ρρ  

RT
p

g =ρ  
(13)

液相については、圧力がゼロのときに密度 oρ と体

積弾性率 lK を使って、状態方程式を 1次式で近似

した。気相については理想気体の状態方程式を仮

定した。Rはガス定数を分子量で割ったもの、Tは

絶対温度である。 

 揮発性成分にはマグマに溶解する部分と気相に

なって気泡を構成する部分がある。この 2つの割

合が熱力学的な平衡条件で決まるとすれば、液体

マグマに溶解できるのは溶解度以内の分だけであ

る。mを揮発性成分の総質量と液体マグマの質量

の比、 dm を溶解度（液体マグマの単位質量に溶解

可能な揮発性成分の質量）とすれば、 dm m< のと

きは、揮発性成分の全てが溶解して 0ψ = となる。

dm m> のときは、溶解した残りが気泡になって 

gρ
ξρψ =   

m
mm d

+
−

=
1

ξ   γ)(
s

d p
pm =  (14)

(14)の第 3式は、溶解度と圧力の関係、すなわち
ヘンリーの法則で、 sp と γ は定数である。 

 (14)の第 1式と(12)を組み合わせると、密度を

記述する次の関係式が得られる。 

)1/(1 / −+
=

g

l

ρρξ
ρρ  ( );dm m>  

( )l dm mρ ρ= <  
(15)

(15)式を (13)式、(14)式と組み合わせることで、

マグマの密度を圧力の関数として計算することが

できる。SPH法では、カーネル平均によって、ま
ず ρが得られるので、この関係を逆に解いて、 ρ

に対応する pを計算する必要があるが、その処理

は数値的に行う。 
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 図 7は、図 3に示した状況設定で、容器内の円

筒が揮発性成分を含むマグマの状態方程式を満た

す場合である。上昇開始からの時間は、揮発性成

分を含まない図 5と同じ 10sである。円筒を構成

する部分は明らかに周囲よりも膨張している。こ

の膨張のために浮力も大きくなり、位置も揮発性

成分を含まない場合よりも上部に達している。

0t = で円筒の中心にあった粒子が、時間とともに

位置、速度、密度、圧力をどう変えるかを、揮発

性成分を含まない場合と比較して図 6に示す。上

昇開始後間もなく密度が下がり始め、気泡の生成

が始まったことが読み取れる。 

 
4.3. 気泡流の破砕の扱い 

 噴火の形態についての数値シミュレーションを

するためには、マグマが破砕されて気泡流から噴

霧流に転移する過程を扱う必要がある。破砕条件

としては、マグマがガラス化して脆性破壊を起こ

す機構や、大きな変形のためにマグマが引きちぎ

られる機構などが提案されているが、数値シミュ

レーションで最も扱い易いのは、気相の体積分率

ψ がしきい値 fψ を超えたときに破砕が起こると

する条件である。マグマ上昇過程の数値シミュレ

ーションでは、この破砕条件が使われることが多

いので、ここでもそれを採用することにする。火

山の周辺で採取される火山噴出物の分析から、 fψ

は 0.7～0.8程度の値を取ると見積もられる。 

 SPH法では、連続体の性質は粒子の性質とみな

せるので、破砕についても粒子の単位で対応する

のが簡単である。すなわち、4.2節で述べたよう
に液体粒子に気相の体積分率ψ の値を変数とし

てもたせ、それが fψ を超えたときにその粒子は破

砕されたとみなすのである。破砕された粒子は、

噴霧流を表現する別な粒子グループに所属させる

ことで、破砕への対応は完結する。噴霧流を表わ

すグループは、気泡流より小さな粘性率をもつよ

うに設定すればよいだろう。計算プログラム上で

は、contrl関数（図 2）で入力ファイルを読み込

んで計算の準備をするときに、破砕時に移行する

粒子グループを作っておく。粒子の運動や状態変

化を計算する各時間ステップでは、破砕条件が満

たされたかどうかを判定し、満たされた場合には

グループの移行を実行する。その処理は fract関

数に書き込まれる。 

 計算例を図 8にあげる。これは図 7で取り上げ

た計算の延長上で得られた結果である。図 7の状
態より発泡が更に進んでおり、体積分率が fψ をこ

えた粒子が現れたので、その粒子は色を濃くして

ある。ここでは計算の便宜のために破砕を多少起

こり易くして、 fψ = 0.5とした。 

 
4.4. マグマに対するその他の対処 

 マグマが関係する現象を扱う際には、この他に

も様々な問題にぶつかる。問題の詳細や対応事例

は省略して、SPH法の特徴をどう活かすかを考え

る上で参考になりそうな内容を以下に述べる。 

 まず、ガス成分の移動の問題を考える。マグマ

に溶解する揮発性成分は液体中を拡散で移動し、

その拡散によって気泡の成長速度が制御される。

気化して気相になったガス成分は、浸透流として

マグマ中を移動する。大量のガス成分が浸透流に

よって移動して、マグマの外へ逃げ出すと、マグ

マは破砕を起こせなくなり、地表には気泡流のま

ま溶岩として流出する。溶岩の流出と爆発的な噴

火のどちらが起こるかは、上昇過程で浸透流によ

るガス抜きがどこまで進行するかにかかっている。 

 浸透流によるガス成分の移動は、ガス成分の量

mに対する次の微分方程式によって決められる。 

∑∂
∂

=
+∂

∂

i ig

g

x
p

m
m

t 2

2

)
1

(
η
κρ

ρ  (16)

ここで、κは浸透率、 gη はガスの粘性率である。

SPH法では、運動方程式などのと同様な方法で、

この方程式にも対処できる。すなわち、mの変化

を粒子間でのガス成分のやり取りの形で記述する

のである。同様な方法で拡散や熱伝導なども扱う

ことができる。 
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図 6 円筒が揮発性成分を含む流体であるとした場合の計算例。 10st = における粒子の位置と速度（左）

および応力（右）を示す。揮発性成分の発泡と気相の膨張によって、円筒の密度は上昇とともに著しく下

がる。揮発性成分の量はm = 0.001、状態方程式は 5 2 25x10 m /sRT = 、溶解度は 1γ = で 9
a1x10 Psp = とした。 

液面には 5
a10 P の圧力を加えてある。 

 

図 7 円筒が揮発性成分を含む液体であるとした場合（図 7）の 13.6st = における粒子の位置と 
速度（左）および応力（右）。円筒を構成する粒子の一部が破砕条件（気相の体積分率が 0.5以上）を 
満たして、気泡流粒子から噴霧流粒子（色の濃い粒子）に転移している。 
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 次に、マグマが岩石に貫入する過程を考えてみ

よう。水圧破壊と同様な機構で、マグマは岩石中

に割れ目をつくって移動し、地表に噴出して割れ

目噴火を起こす。割れ目に侵入したマグマは、応

力の集中によって岩石の先端を破壊し、割れ目を

されに進展させて、岩石中を移動するわけである。

SPH法では、応力による岩石の破壊は個々の粒子

の性質とみなせるので、破砕の扱いと同様に、こ

の現象にも対処できる。液体マグマとの相互作用

で、固体粒子の差応力が連続体の破壊条件（例え

ばモール・クーリンの条件）を満たしたときに、

固体粒子は破壊され、別なグループ、例えば適当

な粘性率をもつ流体粒子に転換させるのである。

対応する固体粒子の変質によって、岩石はマグマ

の侵入を許すようになるのである。 

 破砕や破壊に対応するこのような扱いは、連続

体力学と同じ基準を用いて対処できる点で SPH

法の利点をうまく生かしている。破砕や破砕が粒

子を単位としてしか扱えない欠点があるが、その

誤差は粒子を十分に細かくとることによって回避

できるだろう。 

 

5. まとめ 

 SPH法では、連続体に対して成立する各種の偏

微分方程式は、粒子間の相互作用を記述する関係

式にそのまま変換できる。この変換の一環として、

連続体の運動方程式や構成方程式から粒子の運動

や状態変化を決める関係式が得られ、それが SPH

法で物質の変形や流動を計算する枠組みとなって

いる。偏微分方程式を粒子間の関係式に置き換え

る方法は、拡散、熱伝導、破壊、構成成分の移動

などにも広く適用できるので、各種の物理化学過

程は変形や流動と一緒に容易に解析できる。本稿

では火山学的な応用例として、揮発性成分の発泡

や膨張、破砕による気泡流から噴霧流への転移、

マグマの上昇が引き起こす水圧破壊などのとり扱

い方を述べた。 

 複数の物質が複雑に入り組む現象の解析に

SPH法が強みを発揮することは、ここでは 2種類

の物体が浮力によって入れ替わる現象を例に示し

た。粒子間相互作用と連続体の偏微分方程式の密

接な対応関係も含めて、SPH法は様々な問題に高

い適応能力をもつことが分かる。しかし、実際に

SPH法を使って見ると、以下のような問題点も実

感される。 

 図 6では、個々の粒子の運動や状態変化にかな

り大きな揺らぎが見られる。特に速度や圧力の揺

らぎが顕著である。この揺らぎは連続体の性質を

反映する現実の変動ではなく、粒子法特有の人工

的な振動であると思われる。原子のブラウン運動

と同様に、粒子が音速で情報を交換しながら相互

の位置を手探りで決めていく過程で発生するもの

と思われる。連続体の各部分には隣接部から強い

拘束力が加わるが、それが粒子間力に置き換えら

れたときに、拘束の一部が解き放たれ、粒子に過

剰な自由度が付与される。人工的な揺れがそれを

反映するものだろう。 

 このような粒子の状態の揺らぎは当然計算誤差

の原因となる。特に、破砕や破壊など、粒子がそ

の性質を変えて別なグループに転移する場合には、

判定に大きな影響を及ぼす可能性がある。著者の

経験では、この揺らぎは運動方程式に人工粘性の

項を考慮することでかなり抑制できる。また、粒

子の状態の時間平均や、周囲の粒子との間の空間

平均をとることも揺らぎを抑える上で有効である。 
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