
大規模固有値計算プログラム Advance/NextNVH

60 アドバンスシミュレーション 2010.11 Vol.4

大規模固有値計算プログラムAdvance/NextNVH

松原 聖* 桑原 匠史**

The solver for large scale eigenvalue problems: Advance/NextNVH
Kiyoshi MATSUBARA* and Takuhito KUWABARA**

 構造設計に対する振動騒音への要求は、「構造物の軽量化」、「環境適合性や快適性」、「嗜好性を対象

とした音質」など、一層重要な課題になってきており、それらの系全体の固有値計算を可能とするソフ

トウェアの出現が期待されている。そのようなソフトウェアは、例えば「自動車全体および機械装置全

体を丸ごと」等の振動騒音設計における処理スピード、および、品質・環境対策・コスト削減などの開

発・設計技術を大幅に向上させる可能性を持っている。本稿では、アドバンスソフトで開発した多階層

モード座標結合モード合成法による大規模固有値計算に対する新しい提案を述べ、その性能について言

及する。これをソフトウェアとして実現した Advance/NextNVH は、大規模固有値計算ソルバーであり、

汎用的な計算機環境において高速な固有値解析を可能にするソフトウェアである。
 Key words: eigenvalue problems, large-scale, parallel processing, mode synthesis

1. はじめに

構造設計において、製品性能と環境対策やユー

ザ満足度の要求を満たすための設計技術として、最

適な音響/構造連成を求めるシミュレーション技術

が要求されている。現在の音響構造連成システムで

は、動的応答（変位、応力、最大音圧、音圧積分、

モード共振ピークの分散など）を最適化する構造を

求めることが困難な機能上の問題と、使い勝手の点

で利用上の制約がある。
その解決案のひとつは、系全体を最適化変更の

対象として、固有値問題を解くことである[1]。具体

的には、自動車等の設計における振動・音響問題で

必要となる数千万自由度に対する数千個の固有値

を計算機で求める問題を解くことを可能にするこ

とである。ここでは、Householder法やLanczos法
のように直接固有値を求める方法ではなく、計算機

の処理速度や記憶容量で有利なモード結合による

多階層のモード合成法等の近似解法が必須である。

しかし、これまでに知られていた実空間とモード空
*アドバンスソフト株式会社 技術第 5部

5th Technical Division, AdvanceSoft Corporation

**アドバンスソフト株式会社 技術第 3部

3rd Technical Division, AdvanceSoft Corporation

間を交互に解く方式の多階層モード合成法[1]では、

大規模になればそれらの行列を関係付ける処理に

非現実的な処理時間がかかり、大規模な問題への適

用が困難であった。
一方では、近年の計算機（ハードウェア）の性

能は飛躍的に向上している。また、並列計算機を利

用したシミュレーション技術の進展にも目を見張

るものがある。筆者らは、並列計算機の市販が開始

され、並列計算におけるメッセージパッシングライ

ブラリが普及してきた1990年代前半から、並列計算

を利用したシミュレーションの高速化および大規

模化に着目して、ソフトウェアの開発および事業を

実施してきた[2][3]。これら文献は、サブスペース

法およびLanczos法による固有値計算の並列化に関

する文献である。ここでは、当時の並列計算機で十

分なスケーラビリティを持った並列化性能を得る

ことができたということを報告した。現在の構造解

析ソフトウェアでは、大規模固有値解析向けの

Lanczos法等でかなり大規模の問題も解けるように

なってきた。しかし、サブスペース法やLanczos法
のように系全体の剛性行列や質量行列を持ち、それ

ら全体を同時に処理する必要のあるアルゴリズム

は、数千自由度ともなるとなかなか適用が難しくな

2. 開発した手法の概要

アドバンスシミュレーション 2010.11 Vol.4 61

ってきている。
このような背景のもと、大規模構造モデルの音

響構造連成応答を最適化解析するシミュレーショ

ンのための固有値問題を解く計算機プログラムが

必要となってきており、また、それを実現できる計

算機環境が整いつつある。
本提案によるモード結合による多階層のモード

合成法では、解析領域全体を木の形式で多階層に領

域分割し、その領域において実空間とモード空間を

完全に分離する[4]。木に領域分割した場合の根元を

上の階層、枝の方を下の階層と呼ぶ。まず、実空間

を下の階層から上の階層に順番に固有値問題を解

く。ここでは、その階層ごとの実空間の固有ベクト

ルを基底として、上の階層から下の階層にモード空

間での固有値問題を解き、最終的に全体領域の固有

値・固有ベクトルを求めるアルゴリズムを構成した。

本稿では、そのアルゴリズムの詳細を述べるととも

に、そのアルゴリズムをソフトウェアとして実現し

て検証した結果について述べる。

2. 開発した手法の概要
2.1. 目的

ここでは、実 n 次元空間における一般化固有値問

題 MxKx λ= を対象とする。すなわち、 nn× 対称

行列 K とM が与えられたときに、実固有値λおよ

び n 次元固有ベクトル x を求める問題を対象とす

る。また、行列 K およびM がスパース行列（行列

の多くの要素が0である行列）である場合に有効な

アルゴリズムについて述べる。一般的に、大規模な

工学的な振動問題では、スパース率は99.9%以上で

ある。ここでは、n が数千万に対して、数千個の固

有値を求める問題を対象とするものである。
本稿で提案するアルゴリズムは、このような条件

を満たすすべての一般化固有値問題に適用可能な

方法であり、また、先に述べた規模の大規模な問題

に対しては、特に有効な高速演算処理方法に関する

手法である。

2.2. 既存の固有値解法

まず、数十万次元（有限要素法での数十万自由度）

程度の大きさのスパースな行列に関して、部分的な

固有値を求める（全固有値を求める問題に対して、

部分的に求めるという言葉を使った）ための既存の

手法としては、Block Lanczos法やサブスペース法

等が利用されている。歴史的には、これ以外の多く

の手法が利用されてきたが、上記の2つ以外の手法

の多くは大規模向けではない。大規模向けではない

手法や既存の手法で大規模向けの手法に関する手

法の詳細については、例えば[1], [5], [6], [7], [8], [9]
等の参考文献を参照していただきたい。
次に、全体構造を分割することで、より大規模な

固有値問題を解くための近似解法として、いろいろ

な手法が開発されてきた。初期の段階では、領域分

割を行い、その内部領域ごとに一般に知られている

Guyan の 縮 約 法 ま た は 静 的 縮 約 (Guyan’s
reductionまたはstatic condensation、以下Guyan
の静的縮約の用語で統一する)を適用した部分構造

モード合成法が利用されてきた。そこでは、静縮小

した行列の固有値をGuyanの静的縮約により内部

領域の自由度を消去した境界領域の固有値問題に

変換して、規模が小さくなった問題を解く。その規

模が小さくなった問題の解を最終的な解として利

用することは、実用的に現実的な解法であった。
また、モード合成法、そのうちで、物理座標結合

モード合成法は、内部領域のモードと静縮小した境

界領域の自由度を結合させた固有値問題として解

く方法である。モード合成を利用したその他の手法

として、モード座標結合モード合成法では、内部領

域モードと静縮小した境界領域モードを結合させ

た固有値問題である。モード合成を利用した手法で

は、基本的に関数空間の基底の考えから構成される

アルゴリズムである。これらはすべて近似手法であ

ること、および、基底とする関数のとり方にはいろ

いろな手法が考えられることから、ソフトウェアと

しては多様な方法が実装され、試されてきた。その

中で、多階層モード座標結合モード合成法では、先

に述べたモード合成法等の近似手法に対して、その

領域に階層を持たせた領域分割に適用する方法で

ある。
さらに、以上で述べた方法を複数取り入れた手法

大規模固有値計算プログラム Advance/NextNVH

62 アドバンスシミュレーション 2010.11 Vol.4

を考えることもできる。そのうちのひとつであるハ

イブリッド型の多階層モード座標結合モード合成

法では、モード座標結合モード合成法と物理座標結

合モード合成法の混合手法である。原理的には、モ

ード合成の範囲内であるが、このようなアルゴリズ

ムをソフトウェアとして実現する場合には、かなり

複雑な制御の必要なソフトウェアとなることを覚

悟する必要がある。また、階層型の領域を制御する

ために、最も単純な二分木を利用する方法、四分木

を利用する方法および任意の木を利用できるよう

にする方法が考えられている。これらは、ソフトウ

ェアの複雑さよりも、処理効率に関係する。
本固有値ソルバーでは、大規模な問題に適合可能

なように、多階層のモード座標結合モード合成法を

利用する。また、本固有値ソルバーで取り扱う領域

としては、多階層型の二分木を利用するアルゴリズ

ムを利用する。これは、多階層を利用することで、

大規模問題にも対応できるようにすることと、物理

的な意味合いの明確なモード座標結合モード合成

法を利用するものとする。ただし、ソフトウェアと

しての実装には、文献には公開されていない各種の

工夫が必要である。

表 1 大規模固有値問題向け数値解法の比較(1)

解

法
精度

処理時間 使用メモリ
小規模 大規模 小規模 大規模

① ◎ 大 × 大 ×
② △ 中 △ 中 ×
③ ○ 中 △ 中 ×
④ ○ 中 △ 中 ×
⑤ ○ 中 ○ 中 ○
⑥ ○ 中 ○ 中 ○

① 従来の方法（Lanczos 法）
② 静縮小した行列の固有値
③ 物理座標結合モード合成法
④ モード座標結合モード合成法
⑤ 多階層モード座標結合モード合成法
⑥ ハイブリッド型多階層モード座標結合モード合

成法

表 2 大規模固有値問題向け数値解法の比較(2)

解法 プログラム開発 並列プログラム

① ライブラリあり 直接法が並列に不向き
② 従来から利用 直接法が並列に不向き
③ 複雑 共有メモリで実現された

④ 複雑 共有メモリで実現された

⑤ かなり複雑 分散メモリ用は複雑
⑥ 非常に複雑 さらに複雑

① ⑥については、表 1 と同じ。

表 3 階層構造処理方法の比較(1)

手法
精

度

処理時間 使用メモリ
小規模 大規模 小規模 大規模

二分木 ○ 中 中 中 中
四分木 ○ 大 大 大 大
任意木 ○ 個別に方法を決める必要あり

表 4 階層構造処理方法の比較(1)

手法 プログラム開発 並列プログラム

二分木

全体の制御が比較

的簡単である
比 較 的 簡 単 、

MPMDでも制御可

能
四分木 同上 同上

任意木
表 3 と同じく個別

の手法に依存
master-slave 方式

が妥当

2.3. 既存の多階層モード座標結合モード合成法

まず、既存のアルゴリズムについて述べる。これ

まで一般的に利用されてきた文献[1]等で公開され

ている既存の多階層モード座標結合モード合成法

のアルゴリズムは次の通りである。
(1) 内部領域の固有値問題；多階層に領域分割され

た最下位の階層（内部領域）における内部領域群の

固有値問題の固有値・固有ベクトルを求める。
(2)境界領域の固有値問題；その親（ひとつ上の階層

の領域）に静縮合された固有値問題の固有値・固有

3. 新規開発したアルゴリズムの特長と例示

アドバンスシミュレーション 2010.11 Vol.4 63

ベクトルを求める。
(3)モード空間での固有値問題；上記(1)と(2)の固有

値問題の固有ベクトルを基底とした空間（モード空

間）での、固有値・固有ベクトルを求める。
(4)固有ベクトルの計算；モード空間で求まった固有

ベクトルを実空間における固有ベクトルに変換す

る。
(5)上位の階層へ；以上のステップで解いた固有値問

題の解を改めて、下位の領域の解と考え、さらにひ

とつ上位の階層について固有値問題を解く。すなわ

ち、その上位の領域について静的縮約された固有値

問題を解くステップ(2)に戻る。
 図 1 にそのアルゴリズムを示す。

読み込み
（Ｋ，Ｍ、領域分割インデクス）

通信・内部インデクス作成

最下位レベルの固有値計算

縮合計算

縮合領域固有値計算

モード合成行列作成

モード空間固有値計算

親
の
領
域
の
処
理
へ

図 1 既存の多階層モード座標結合モード合成法

アルゴリズム[1]

2.4. 開発した多階層モード座標結合モード合成法

前節で述べた方法（既存の多階層のモード座標結

合モード合成法のアルゴリズム）では、2.3節の

(3)(4)の処理において、上位領域と下位領域の関係

を表す行列（[1]におけるP行列）の計算に多大な処

理時間がかかることが短所であった。本稿で提案す

る新しい方法のひとつの特長は、処理時間を要する

P行列を計算する必要のない、従来の方法に替わる

高速演算処理手法である。そのため、ここでは次の

ようなアルゴリズムを利用する。
(1) 内部領域の固有値問題；多階層に領域分割され

た最下位の階層（内部領域）における領域群の固有

値問題の固有値・固有ベクトルを求める。

(2)境界領域の固有値問題；その親（ひとつ上の階層

の領域）に静縮合された固有値問題の固有値・固有

ベクトルを求める。さらにひとつ上の階層の固有値

問題を解く。すなわち、その上位の領域に静的縮約

された固有値問題を最上位に到達するまで繰り返

して解く。
(3)モード空間の固有値問題；上記(1)とすべての(2)
における固有値問題で求めた固有ベクトルを基底

とた空間（モード空間）で、固有値・固有ベクトル

を求める。まず最上位のモード空間で固有値を求め、

そこで固有ベクトルを求める。その次に、ひとつ下

位の階層の処理を行う。この処理を、最下位の領域

に到達するまで繰り返す。
(4)固有ベクトルの計算；最下位の領域の処理で求ま

った固有値が系全体の固有値である。最後に、最下

位の領域の処理におけるモード空間で求まった固

有ベクトルを実空間における固有ベクトルに変換

する。
 ここに示した新しいアルゴリズムを図2に示す。

読み込み
（Ｋ，Ｍ、領域分割インデクス）

通信・内部インデクス作成

内部領域の固有値計算

縮合計算

境界領域固有値計算

モード合成行列作成

モード空間固有値計算

親
の
領
域

の
処
理
へ

子
の
領
域

の
処
理
へ

図 2 新規開発した多階層モード座標結合モード

合成法アルゴリズム

3. 新規開発したアルゴリズムの特長と例示
3.1. 既存のアルゴリズムの例示
3.1.1. 二領域二階層の定式化
(1) 概要

 領域全体を分割し、その領域ごとに固有値を求め、

それらの結果をモード合成して全体の固有値にす

ることが領域分割の考え方である。モード合成法は、

大規模固有値計算プログラム Advance/NextNVH

64 アドバンスシミュレーション 2010.11 Vol.4

各節点の変位を境界節点を拘束したときの動的変

位（振動モード）と境界節点の変位に従属して決ま

る静的変位とに分離することができ、それらを独立

に取り扱うことができるということを基本として

いる。従って、各レベルの変位は、それより上位の

変位を利用して、表現することができる。
本節で議論する問題は、図3で示すような二領域

二階層を対象としている。

2D
aD 1φ

2φ
aφ

1D

図 3 二領域二階層の場合のモデル

 ここでは、まず、

11 1 11 11 1

22 2 2 22 2 2

1 2 1 2

1

2

0 0
0 0

a a

a a

a aa a aa a a aa

a

M M K Ku u
M M u K K u

u uM M M K K K
f
f
f

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

��
��
�� (1)

を解くことを考える。対応する固有値問題は、

11 1 1

22 2 2

1 2

11 1 1

22 2 2

1 2

0
0

0
0

a

a

aa a aa

a

a

aa a aa

K K u
K K u

uK K K
M M u

M M u
uM M M

λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2)

である。ここで下付きの添え字は、それぞれの領域

を表す。本問題に対して、Guyanの静的縮約を具体

的に書き下すと、

0
0

2222

1111

=+
=+

aa

aa

uKuK
uKuK

 (3)

の通りである。
 これらの記号を使って、全体の固有値を求める手

順は次の通りである。まず、内部領域 1D と 2D につ

いて独立に固有値問題を解き、 1φ と 2φ を求める。

次に境界領域については、Guyan の静的縮約条件

を利用した固有値問題を aD について解き、 aφ を求

める。ここまでは物理空間での固有値問題である。

処理の後半では、モード空間の固有値問題を解く。

モード空間の基底には、 1φ と 2φ と aφ を利用する。

ここでは、実空間とモード空間の間の変換の行列T
を定義し、その固有値問題を解く。以下では、その

処理の流れと定式化について述べる。

(2) 内部領域の固有値問題

まず、内部領域の固有値問題として、

222222

111111

uMuK
uMuK

λ
λ

=
=

 (4)

を解く。ここで解くことのできた問題の固有ベクト

ル群を、 1φ 、 2φ とする。 1φ は、行数は 1u と同じで、

列数は求めた固有値の数と等しい。従って、 1φ 、 2φ
は、行数も列数もサイズは異なる行列である。また、

それぞれの問題で計算された固有ベクトル群は、す

べてM 直交となるように正規化する。すなわち、

ijji
t M δϕϕ = (5)

であり、行列の形式であれば、
IM j

t
i

t =φφ (6)
となるようにする。ここで、 iϕ は、 1φ または 2φ 中

のひとつの固有ベクトルである。また、 ijδ はクロネ

ッカのデルタであり、I は単位行列である。本稿中

で、以下、すべての固有ベクトルは M 直交を仮定

するものとする。

(3) 境界領域の固有値問題

次に、Guyan の静的縮約条件を

aa

aa

uKKu

uKKu

2
1

222

1
1

111
−

−

−=

−=
 (7)

の形で利用して、運動方程式に代入し、 1u と 2u を

消去して、 au の方程式を求める。すなわち、

()
() aaaaaaaa

aaaaaaa

fuKKKKKKK

uKKMKKMM

=−−+

−−
−−

−−

2
1

2221
1

111

2
1

2221
1

111 ��
(8)

となる。この固有値問題は、

aaaaaaaa

aaaaaaaa

aaaaaa

KKMKKMMM

KKKKKKKK

uKuM

2
1

2221
1

111

2
1

2221
1

111
−−

−−

−−=′

−−=′

′=′ λ��

(9)

3. 新規開発したアルゴリズムの特長と例示

アドバンスシミュレーション 2010.11 Vol.4 65

として解くことができる。ここで求めた固有ベクト

ル群を、 aφ とする。

(4) モード空間の固有値問題

ここで解けた固有値問題は、Guyan の静的縮約

条件のもとで正しいが、求める問題の解ではない。

そこで、得られた固有ベクトル 1φ 、 2φ 、 aφ を基底

とした空間（モード空間）を考え、その空間での固

有値問題を再度解くことにする。 1
1 11 1a au K K u−= − で

あることを考えると、 1u は 1φ と 1
11 1a aK K ϕ−− （以下、

aaG φ1 と書く）で張られる空間に存在すると仮定し

ても大きな間違いではない。また、 2u は 2φ と
1

22 2a aK K ϕ−− （以下、 aaG φ2 と書く）で張られる空間

に存在すると仮定する。この仮定は近似ではあるが、

実用上は問題ないレベルである。また、これは、

Guyan の静的縮約条件のもとで得られた解を補正

する役割を果たしている。
これらの記号を利用して、モード空間での固有値

を求める。まず、モード座標系を Aξ と書くと、も

ともとの運動方程式の解は、

A

a

aa

aa

a

G
G

u
u
u

ξ
φ
φφ
φφ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

00
0

0

22

11

2

1

 (10)

となる。これは、モード座標系を物理座標系に変換

する式である。この行列を AT と書く。すなわち、

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

a

aa

aa

A G
G

T
φ
φφ
φφ

00
0

0

22

11

 (11)

である。モード座標系を物理座標系に変換する式を

もとの固有値問題に代入し、そのあとで、左から t
AT

を乗ずると

11 1

22 2

1 2

11 1

22 2

1 2

0
0

0
0

at
A a A A

a a aa

at
A a A A

a a aa

K K
T K K T

K K K
M M

T M M T
M M M

ξ

λ ξ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (12)

となる。この式を利用して、求めるべき問題の運動

方程式は

1 1 11 1 1 1

2 2 22 2 2 2

1 2

1 1 11 1 1 1

2 2 22 2 2 2

1 2

0 0 0
0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0 0

T

a a a a a

a a a a a A
T T

a aa a aa
T

a a a a a

a a a a a A
T T

a aa a aa

G K K G
G K K G

K K K
G K K G
G K K G

K K K
f

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ξ

ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ξ
ϕ ϕ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟+

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
′=

��

 (13)

となる。ここで、次の課題は、このモード空間での

方程式を解くことである。
そのために、この固有値問題の左辺と右辺を展開

してみる。まず、左辺は、

() ()

1 11 1 1 1

2 22 2 2 2

1 21 2

0 0 0 0
0 0 0 0

0 0

t

a a a
t

a a a
t t t

a a aa aa a a a a

K K G
K K G

K K KG G

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕϕ ϕ ϕ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

() ()

()
()

()

() () ()

11 1 11 1 11

2 22 2 22 2 2

1 1 2 2 11 1 22 21 2

1 11 1

2 22 2

1 1 2 2 11 1 22 21 2

00 0
0 0 0

0 0 0 0
0 0 0 0

t

a a a
t

a a a
t t t

a a aa a a aa a a a a
t

t

t t t
a a aa a a aa a a a a

K K G K
K K G K

K K K K G K GG G
K

K
K K K K G K GG G

ϕ ϕϕ
ϕ ϕ ϕ

ϕ ϕ ϕϕ ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ ϕϕ ϕ ϕ

+
= +

+ +

=
+ +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

() ()

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

′
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

′++
=

t
aaa

t
a

t

t

t
aaa

t
aa

t
a

t
aaa

t
a

t
aa

t

t

K
K

K

KKKGKKG
K

K

φφ
φφ

φφ

φφφφφφφφφφ
φφ

φφ

00
00
00

00
00

2222

1111

222222111111

2222

1111

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

′
=

I
I

I

M
M

M

a

t
aaa

t
aa

t

t

λ
λ

λ

φφλ
φφλ

φφλ

00
00
00

00
00
00

2

1

22222

11111

 (14)
となる。ここで、

() ()
11111

1
111

1111
1

111111

φφφφ

φφφφ
t

a
t

a
t

a
t

a

t

aa
t

aa

KKKK

KKKKG

−=−=

−=
−

−

 (15)

および

() ()
22222

1
222

2222
1

222222

φφφφ

φφφφ
t

a
t

a
t

a
t

a

t

aa
t

aa

KKKK

KKKKG

−=−=

−=
−

−

 (16)

を利用した。この式変形では、固有ベクトルはM 直

交であること等を十分に利用している。この式変形

が可能であることから、モード座標結合モード座標

系の定式化全体の式変形の見通しがかなり良くな

っている。次に右辺を変形する。

大規模固有値計算プログラム Advance/NextNVH

66 アドバンスシミュレーション 2010.11 Vol.4

() ()

() ()

()
()

()

1 11 1 1 1

2 22 2 2 2

1 21 2

1 11 1 11 1 1

2 22 2 22 2 2

1 1 2 2 11 1 22 21 2

0 0 0 0
0 0 0 0

0 0
0 0 0

0 0 0

t

a a a
t

a a a
t t t

a a aa aa a a a a
t

a a a
t

a a a
t t t

a a aa a a aa a a a a

M M G
M M G

M M MG G
M M G M

M M G M
M M M M G M GG G

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕϕ ϕ ϕ

+
= +

+ +

=

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

()
()

() ()
()
()

1 11 1 1 11 1 1

2 22 2 1 11 1 1

1 11 1 1 1 11 1 1

1 11 1 1

1 11 1 1

0
0

0

.

t t

a a a
t t

a a a
t tt t t t

a a a a a a a aa a
t

a a a
t

a a a

M M G M
M M G M

M G M M G M M
I M G M

I M G M
sym I

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ
ϕ ϕ

+
+
′+ +

+
= +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

(17)

となる。ここで、sym は対称行列であることを表し

ている（本稿中、以下、同様である）。ここでも、

固有ベクトルはM 直交としたことで式変形の見通

しがよくなっている。モード空間の固有値問題は、
()
()

1 11 1 11

2 2 22 2 2

00 0
0 0
0 0 .

t

a a a
t

A a a a A

a

I M G MI
I I M G M

I sym I

ϕ ϕλ
λ ξ λ ϕ ϕ ξ

λ

+
= +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (18)

の形の固有値問題に帰着できることがわかる。ここ

で求めることができる固有値を Aλ および固有ベク

トルを Aθ とする。ここで計算できるモード空間の

固有値問題の固有値は、もとの問題の固有値と一致

する。もちろん、固有ベクトルはもとの問題の固有

ベクトルとは一致しない。固有ベクトルについては、

次の節で求め方を示す。

(5) 固有ベクトルの計算

最後に、これまでに得られた固有値と固有ベクト

ルから、もとの問題の固有ベクトルを再構成する方

法について述べる。モード空間で得られた固有ベク

トルを Aθ とすると、この Aθ からもとの固有値問題

の固有ベクトルを算出する手順を確認する。モード

空間から物理空間への変換は AT を乗ずればいいの

で、

AAA T ξφ = (19)
で、もとの物理空間の固有ベクトルを求めることが

できる。

(6) アルゴリズムの注意点

これらの定式化で注意すべき点は、物理空間では

非常に多い次元（有限要素法での自由度数）である

が、モード空間に変換されるとその次元は求めるべ

き固有値の数程度となる。従って、その数が激減す

ることに注意を払って定式化する必要がある。

3.1.2. 多領域二階層の定式化
(1) 概要

 多領域二階層の定式化においては、本節では、下

図のような状況を考える。ここでは、境界領域（図

中では線分の集合）のすべてをひとつの領域とする。

1φ

2φaφ

3φ

4φ

5φ

6φ

7φ

8φ

図 4 多領域二階層の場合のモデル

多領域二階層のモデルにおいて、全体の固有値を

求める手順は次の通りである。まず、内部領域 1D か

ら 8D について独立に固有値問題を解き、 1φ から 8φ
を求める。次に境界領域については、 1D から 8D ま

での Guyan の静的縮約条件を利用した固有値問題

を aD について解き、 aφ を求める。ここまでは物理

空間での固有値問題である。処理の後半では、モー

ド空間の固有値問題を解く。モード空間の基底には、

1φ から 8φ と aφ を利用する。ここでは、実空間とモ

ード空間の間の変換の行列T を定義し、その固有値

問題を解く。以下では、二領域二階層と異なる部分

を中心に、多領域二階層での処理の流れについて、

述べる。

(2) 内部領域の固有値問題

まず、内部領域の固有値問題として、

iiiiii uMuK λ= (20)
を解く。ここで解くことのできた問題の固有ベクト

ル群を iφ とする。本節で取り扱っている問題では、

81 ≤≤ i である。

(3) 境界領域の固有値問題

 次に、Guyan の静的縮約条件を利用して、縮合

された行列に対する固有値問題

3. 新規開発したアルゴリズムの特長と例示

アドバンスシミュレーション 2010.11 Vol.4 67

aaaaaa uKuM ′=′ λ�� (21)

を解く。ここで、 aaM ′ と aaK ′ は縮合された合成行列

と質量行列である。また、固有ベクトル群を aφ とす

る。

(4) モード空間の固有値問題

二領域二階層と同じ考え方で定式化すると、次の

ような実空間とモード空間の変換行列が得られる

ことがわかる。

1 11

2 22

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

a a

a a

a a

a a

Aa a

a a

a a

a a

a a

Gu
Gu

u G
u G
u G
u G
u G
u G
u

ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ

ξϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(22)

 ここで、前節と同じ記法ではあるが、

iaiiia KKG 1−−= (23)

である。ここで求めることができる固有値を Aλ お

よび固有ベクトルを Aθ とする。

(5) 固有ベクトルの計算

次に、固有ベクトルを Aθ とする。ここでも、モ

ード座標系から物理座標系への変換は AT を乗ずれ

ばいいので、

AAA T ξφ = (24)
で物理空間の固有ベクトルを求めることができる。

これは、二領域二階層の場合とまったく同様である。

3.1.3. 多領域三階層の定式化
(1) 概要

多領域三階層における定式化では、ここまでに説

明した二階層の定式化より、少し複雑になる。その

理由は、最下位と最上位の領域が中間の領域を通し

て関連しているためである。本節では、図のような

状況を考える。ここでは、境界領域（図中では線分

の集合）のすべてをひとつの領域とする。最終的に

目指す定式化は、次の図のような多領域多階層の定

式化である。

1φ
2φ

3φ
4φ

5φ

6φ
7φ

8φ9φ
10φ

12φ
11φ8,9,4φ

5,12,1φ

6,11,2φ
7,10,3φ8,9,4,7,10,3φ

6,11,2,5,12,1φaφ

bφ
ba,φ

Aφ

図 5 多領域多階層の場合のモデル

多領域三階層において、全体の固有値を求める手

順は次の通りである。領域は、図 5 のように階層化

され、それらの領域は二分木で構成されているもの

とする。まず、内部領域 1D から 8D について独立に

固有値問題を解き、 1φ から 8φ を求める。次に境界

領域については、二分木の上位に向かって処理する。

この場合には、まず 4 つの境界領域について処理す

る。最初は 1D と 4D の Guyan の静的縮約条件を利

用した固有値問題を 9D について解き、 9φ を求める。

同様にして、 10φ から 12φ までを求める。次の上位の

レベルについて、次々に縮合された固有値問題を解

いていく。最後に、最上位の領域に縮合された固有

値問題を解いて、 Aφ を求める。ここまでは物理空

間での固有値問題である。
処理の後半では、下位のレベルからモード空間で

の固有値問題を解く。最初は 1D と 4D について、モ

ード空間の基底には 1φ と 4φ と 9φ を利用してその固

有値問題を解く。同様にして、 10φ から 12φ までのモ

ード空間の処理を行う。次の上位のレベルについて、

次々にモード空間でも固有値問題を解いていく。最

後に、最上位の領域についてモード空間での固有値

問題を解く。モード空間の基底には、 aφ と bφ と Aφ
を利用する。ここでは、実空間とモード空間の間の

変換の行列T を定義し、その固有値問題を解く。以

下では、その処理の流れを述べる。

大規模固有値計算プログラム Advance/NextNVH

68 アドバンスシミュレーション 2010.11 Vol.4

(2) 内部領域の固有値問題

まず、内部領域の固有値問題として、

iiiiii uMuK λ= (25)
を解く。ここで解くことのできた問題の固有ベクト

ル群を iφ とする。

(3) 境界領域の固有値問題

次に、Guyan の静的縮約条件を利用して、縮合

された行列に対する固有値問題

aaaaaa uKuM ′=′ λ�� (26)

を解く。ここで、 aaM ′ と aaK ′ は縮合された合成行列

と質量行列である。また、固有ベクトル群を aφ とす

る。

(4) モード空間の固有値問題

ここでは、3 階層のデータにおけるT 行列および

モード空間での方程式

xMxK λ= (27)

KTTK t= (28)

MTTM t= (29)

における K とM とを示す。まず、多階層の場合に

は、T は次のような形となる。この式の導き方は、

前節までと同様に、Guyan の静的縮約条件を利用

して定式化する。

()
()
()
()

1 15 5 17 15 57 7

2 25 5 27 25 57 7

3 36 6 37 36 67 7

4 36 6 47 46 67 7

5 57 7

6 67 7

7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

G G G G
G G G G

G G G G
T G G G G

G
G

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ

′+
′+
′+

= ′+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(30)

ここで、

1

57 55 57
1 1

55 55 15 11 15 25 22 25
1 1

57 57 15 11 17 25 22 27
1

67 66 67
1 1

66 66 36 33 36 46 44 46
1 1

67 67 36 33 37 46 44 47

T T

T T

T T

T T

G K K
K K K K K K K K
K K K K K K K K
G K K
K K K K K K K K
K K K K K K K K

−

− −

− −

−

− −

− −

′ ′ ′= −
′ = − −
′ = − −
′ ′ ′= −
′ = − −
′ = − −

(31)

である。また、解くべき固有値問題の xMxK λ= に

おける K とM は次の通りである。

1

2

3

4

5

6

7

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

I
I

I
K I

I
I

sym I

λ
λ

λ
λ

λ
λ

λ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 15 5 1 17 7

2 25 5 2 27 7

3 36 6 3 37 7

4 46 6 4 47 7

5 57 7

6 67 7

0 0 0 0
0 0 0

0 0
0

0

t t

t t

t t

t t

t

t

I M M
I M M

I M M
M I M M

I M
I M

sym I

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(32)

ただし、ここで、次のようにおいた。

46464446

36363336

25252225

15151115

MGMM
MGMM
MGMM
MGMM

+=

+=

+=

+=

 (33)

()
()
()
()

67676667

57575557

4767466746474447

3767366736373337

2757255725272227

1757155715171117

MGMM
MGMM

MGMGGGMM
MGMGGGMM
MGMGGGMM

MGMGGGMM

′+′′=

′+′′=

+′+′+=

+′+′+=

+′+′+=

+′+′+=

(34)

ここで、これらの M や G 同士の演算には、多大な

コストがかかることを認識しておく必要がある。従

って、大規模計算において、この課題を解決しなく

てはならない。

(5) 固有ベクトルの計算

最終的に求めることができたモード空間の固有

ベクトルについては、前節と同じようにT でモード

空間から実空間に変換することができる。次に、固

有ベクトルを Aθ とする。モード空間から物理空間

への変換は AT を乗ずればいいので、

AAA T ξφ = (35)
で物理空間の固有ベクトルを求めることができる。

この式自体は二階層の場合とまったく同様である

が、ソフトウェアでの実装では大きく異なる。

3. 新規開発したアルゴリズムの特長と例示

アドバンスシミュレーション 2010.11 Vol.4 69

3.2. 開発したアルゴリズムの例示

既存の手法では、さらに階層が増えた場合に、T
の定式化が複雑になり、また、演算量も増加する。

従って、本ソルバーの開発では、この部分のアルゴ

リズムおよび全体の制御方法を新規に開発した。

3.2.1. 既存のアルゴリズムの欠点

前節で(30)式に示した通り、従来のアルゴリズム

では、

()
()
()
()

1 15 5 17 15 57 7

2 25 5 27 25 57 7

3 36 6 37 36 67 7

4 36 6 47 46 67 7

5 57 7

6 67 7

7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

G G G G
G G G G

G G G G
T G G G G

G
G

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ

′+
′+
′+

= ′+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(36)

における(1,7)成分等のように、T 行列を構成する一

部の G について、G 同士を演算して、修正する必

要がある。また、対角ブロックおよび再右列以外に

も(1,5)成分等の位置の成分が出現する。これらの状

況により、処理方式が複雑となるとともに、演算量

が爆発的に増大する。

3.2.2. 開発したアルゴリズム
(1) 開発したアルゴリズムの特長

前節で述べた欠点を克服するために、新たなアル

ゴリズムを開発した。ここで開発したアルゴリズム

では、モード空間における固有値計算については、

G を修正する必要がなく、また、対角ブロックおよ

び再右列以外には、非零のブロックはあらわれない。
ここでは、次の手順で処理することを考える。ま

ず、最下位の領域の固有値問題を解く。その後、最

下位のレベルから最上位のレベルまで順番に縮合

計算と縮合領域の固有値計算を実施する。ここまで

は、従来の方法と同じである。次に、モード空間に

おいては、上のレベルから 1 階層ずつ下位に降りな

がら処理する。すなわち、モード空間における処理

を既存の方法とは逆の順序で行う。
具体的には、まず、モード空間では、レベル 1（最

上位）とレベル 2（上位から 2 番目）の 2 つの階層

で、レベル 1+2 のモード合成処理（固有値を計算）

を行う。次に、レベル 1+2 とレベル 3 の 2 つの階

層で、レベル 1+2+3 のモード合成処理を行う。こ

れを繰り返す。当然ながら、その処理量は増大して

いく。最後に最上位から最下位の直前までのレベル

におけるモード空間で処理した結果と最下位レベ

ルの 2 つの階層で、全体のモード剛性処理を行う。

ここで、求まった解が最終的な全体の系の固有値と

なる。
ここで述べた処理を三階層モデルでの定式化に

ついて述べる。まず、最下位のレベルで固有値計算

を行う。次に、最下位のレベルから、順次、上のレ

ベルに上がりながらレベル 1（最上位のレベル）ま

で縮合計算と縮合領域の固有値計算を繰り返し実

施する。ここまでは、既存のアルゴリズムと同等の

物理座標系での処理を行う。ただし、ここまででは、

モード空間での処理は一切行わないことに注意す

る。
そののちに実施すべきモード空間での処理手順

は次の通りである。まず、モード空間における最初

の処理は、レベル 1 とレベル 2 を対象とする。この

処理では、

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1,

1,1,22,2

1,1,11,2

00
0

0

B

BB

BB

G
G

T
φ
φφ
φφ

 (37)

のT 行列を利用する。ここで、 ,1Bϕ は最上位で求め

た縮合領域の固有ベクトルである。これを用いてモ

ード空間の固有値を計算する。ここで求められた固

有ベクトルを ,1 2Bϕ + とすると、次のモード空間での手

順では、

[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

++

++

++

++

21,

21,21,44,3

21,21,33,3

21,21,22,3

21,21,11,3

0000
000

000
000
000

B

BB

BB

BB

BB

G
G
G
G

T

φ
φφ
φφ
φφ
φφ

(38)

を利用する。ここで注意すべきことは、対角ブロッ

クおよび再右列以外には、非零のブロックはあらわ

れないことである。これを用いてモード空間の固有

値を計算する。ここで求められた固有ベクトルを

,1 2 3 4Bϕ + + + とすると、最終的なモード空間での手順では、

大規模固有値計算プログラム Advance/NextNVH

70 アドバンスシミュレーション 2010.11 Vol.4

[]

4,1 1 ,1 2 3 ,1 2 3

4 ,2 2 ,1 2 3 ,1 2 3

4,3 3 ,1 2 3 ,1 2 3

4 ,4 4 ,1 2 3 ,1 2 3

4,5 5 ,1 2 3 ,1 2 3

4,6 6 ,1 2 3 ,1 2 3

4 ,7 7 ,1 2 3 ,1 2 3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0

B B

B B

B B

B B

B B

B B

B B

G
G
G
G
GT
G
G

ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ ϕ

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

=

4,8 8 ,1 2 3 ,1 2 3

,1 2 3

0 0 0 0 0
0 0 0 0 0 0 0 0

B B

B

Gϕ ϕ
ϕ
+ + + +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(39)
を利用する。ここで求められた固有値および固有ベ

クトルが最終的な全体系の固有値および固有ベク

トルとなる。
ここでの多領域三階層での定式化で確認したよ

うに、新規に開発したアルゴリズムでは、G を修正

する必要がない。従来のアルゴリズムではモード空

間での処理に処理時間がかかっており、その原因は

G の修正(P 行列)により、T 行列を構成する必要が

あったことである。この新規アルゴリズムはモード

空間の処理では、その必要がなく、既存のアルゴリ

ズムよりも高速に処理可能である。確認しておくと、

処理速度の違いは、T 行列（モード空間から実空間

へ変換する行列）の違いのみである。

(2) 処理速度の見込み

新規に開発したアルゴリズムでは、この T 行列を

利用した演算について、その演算量から処理速度を

見積もるとつぎの通りとなる。処理時間の支配的な

部分は、

[] [][]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

=

Isym
MGMI
MGMI
MGMI
MGMI

TMT

BBB
T

BBB
T

BBB
T

BBB
T

T

.
)(
)(0
)(00
)(000

44444

33333

22222

11111

φφ
φφ
φφ
φφ

(40)

における BBB
T MGM φφ)(11111 + の演算である。実際

の演算では、 BB MG 11 , のスパース性を利用して、

()BBBB
T MGM φφφ 11111 + を演算する。その演算量は、

例えば 160 万自由度のシェルを中心とした実用的

な検証例題 B では、
・ BBBB MG φφ 11 , ；演算回数、約 30 億回
・ BBGM φ111 ；演算回数、約 9 億回
・ 上記の量×T

1φ ；演算回数、約 2 億回

となる（和 1回と積 1回で演算 1回とカウントした）。

検証計算の条件設定では、これを 512 領域で繰り返

すため、1sec に 1G 回の演算が可能として、この演

算のみで 2,000sec、その他の処理をあわせてモード

空間での処理を 3000sec 程度で演算できることに

なる。一方、従来のアルゴリズムでは、モード計算

1 回に対して、この数倍の演算量が必要であったこ

とがわかる。階層が多くなれば、さらにこの処理は

増大する。このことから本アルゴリズムの優位性は

明らかである。

(3) 計算精度の見込み

 既存のアルゴリズムは、境界領域を多階層のモー

ド合成法で解き、境界領域をひとつの階層として全

体を 1 階層のモード合成法として解く方法である。

理論上は、既存のアルゴリズムと新しく開発したア

ルゴリズムとでは、モード空間において、同等のレ

ベルの基底関数を利用しているため、同等の精度が

出ると考えられる。しかし、これについては、実際

にソフトウェアを作成したのちに、精度を確認する

必要がある。
我々は、改良したアルゴリズムに関して、該当す

る部分の精度について、ソフトウェアの開発の段階

で、既存のアルゴリズムと同等の精度が出ることを

確認した。この結果については、5 章に示す検証問

題 A で述べることとする。ここで具体的に実施した

ことは、

[] 0

.
)(
)(0
)(00
)(000

0000
0000
0000
0000
0000

44444

33333

22222

11111

4

3

2

1

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

η

φφ
φφ
φφ
φφ

λ

λ
λ

λ
λ

λ

Isym
MGMI
MGMI
MGMI
MGMI

I
I

I
I

I

BBB
T

BBB
T

BBB
T

BBB
T

B

(41)

のタイプの固有値問題に関する精度の確認したこ

とである。ここで、 1λ から 4λ の個数は任意であり、

内部領域の個数となる。これに対し、これまでの多

3. 新規開発したアルゴリズムの特長と例示

アドバンスシミュレーション 2010.11 Vol.4 71

階層モード合成法で解いていたタイプは、内部領域

が 2 つに限定されたモデル

[] 0

.

~)(

~)(0

00
00
00

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

η

φφ
φφ

λ

λ
λ

λ

Isym
MGMI
MGMI

I
I

I

BbBbBbb
T

b

BaBaBaa
T

a

B

b

a

(42)

を繰り返し解くことに相当している。

3.2.3. まとめ
 本稿のここまでに示した通り、新規に開発したモ

ード空間での固有値問題解法における処理は、精度

では既存のアルゴリズムと同程度であること、およ

び、演算量の面で既存のアルゴリズムと比較して非

常に有利なことがわかった。このような理由により、

新規に開発した本アルゴリズムを採用とすること

を決めた。

3.3. 定式化における注意
3.3.1. 頻繁にあらわれる行列の演算について
 既存のアルゴリズムと同様に新しく開発したア

ルゴリズムにおいても、階層化された行列の演算を

繰り返す場合に、本定式化では、

aaaaaaaa

aaaaaaaa

aaaaaa

KKMKKMMM

KKKKKKKK

uKuM

2
1

2221
1

111

2
1

2221
1

111
−−

−−

−−=′

−−=′

′=′ λ

(43)

で示す特徴的な演算が随所にあらわれる。これは、

一般によく知られている LDU 分解においてあらわ

れる手順と全く同じものである。従って、ソフトウ

ェアを実装する際の該当箇所におけるプログラミ

ングにおいては、従来の LDU 分解をブロック型の

行列に対して行うプログラムを作成することと同

値である。従って、これらのプログラム開発におい

ては、従来型の技術が応用できる。ここでは、ブロ

ックごとの fill-in の処理も必要になってくること

には、当然、注意しなくてはならない。すなわち、

ブロック行列内のみならず、ブロックごとの接続の

情報も管理しておく必要がある。

3.3.2. Strum列の計算について
 前節で述べたように本アルゴリズムはLU分解と

同様の手順を踏んで行われる。この手順において、

Strum 列も同時に計算することができる。確認のた

め定義を確認しておくと、Strum 列とは下記のよう

な定義である。
 ある与えられた実数 a に対して、 MxKx λ= の実

数 a 以下の大きさの固有値の数を数えることは、固

有値の計算を必要としなく、それよりもかなり少な

い演算数でこの数を求めることが可能となる。具体

的には、 aMK − を LDU のように LDU 分解する。

ここで、Dの対角項のうち、非負の対角項の数を数

えることで、これが MxKx λ= に対する a 以下の固

有値数となる。これは、線型代数の入門編であらわ

れるシルベスターの慣性則を用いるれば、明らかな

事実である。
実用的には、固有値計算の精度を確認するために、

しばしば Strum 列の計算は必要である。本固有値

ソルバーにおいて、シフトした系に対する縮合演算

をすることで、本固有値ソルバーを Strum 列の演

算に利用できる。本演算が、同じ使用方法で利用可

能なソフトウェアで実施できることは、実用的に非

常に有効であることが多い。

3.3.3. 領域分割について
 本アルゴリズムにおける領域分割では、２つの要

請がある。そのひとつは、プロセス間の通信量を減

少させるために領域間の境界をできるだけ少なく

することである。ふたつめは、各プロセスでの処理

量を均一化するために、領域ごとの節点を均一にす

ることが必要である。領域分割におけるこれらの判

断基準は、並列計算において、プロセス間の通信を

ための領域分割と同等のものである。本プログラム

での領域分割は、MeTiS 等の汎用のライブラリを

利用することを前提としている。従って、領域分割

については、本固有値ソルバーにおける開発要素に

は含めていない。本開発では、MeTiS をひとつの

ツールとして利用している。

大規模固有値計算プログラム Advance/NextNVH

72 アドバンスシミュレーション 2010.11 Vol.4

4. 開発したアルゴリズムの定式化
 3 章では、サンプル例題によるアルゴリズムの例

示を行った。それらのアルゴリズムを踏まえ、本章

では、開発したアルゴリズムの正確な定式化につい

て述べる。

4.1. 開発したモード座標結合モード合成法
4.1.1. 記号の定義

上記の課題を解決するために、領域分割を次のよ

うに定義する。ベクトル x の n 成分をノードとし、

行列 K およびM の非零成分をエッジとするグラ

フ
1D を考える。このグラフを p 個に分離されたグ

ラフ ()1
1 ,1 piD i = その境界のノードで構成される

グラフ ()1,
1 =jD jB を作る。すなわち、 iD1

と jBD ,
1

のノード間にはエッジ jiD ,
1

は存在するが、 iD1
と

jD1 ()ji ≠ のノード間にエッジは存在しない。また、

()1,
1 =jD jB と ()1

1 ,1 piD i = および iBD ,
1

で、もとの

グラフ
1D 全体を構成する。分割された

()1
1 ,1 piD i = を子、その子とエッジを共有する

()1,
1 =jD jB を親と呼ぶ。この操作を、 ()1

1 ,1 piD i =

に対して再帰的に行うことにより、 ()2
2 ,1 piD i =

と ()1,
2 ,1 pjD jB = を構成する。注意すべきことは、

jBD ,
2

の個数が iD1
の個数となることである。さら

に、 ()1,m
i mD i p= に対して、同様の操作を行えば、

()1
11,m

i mD i p+
+= と ()1

, 1,m
B j mD j p+ = を構成できる。子

と親の関係も同様に定義できる。また、ひとつの親

,
m

B jD の子たちを ()()1, jm
i mD i p= と書くことにする。

階層を次のように定義する。領域分割の手順によ

り、次の階層のグラフ（以下、領域とも呼ぶ）が定

義できる。
1D → ()1,

1 =jD jB → ()1,
2 ,1 pjD jB = →・・・

→ ()1, ,1 −= mjB
m pjD → ()mj

m pjD ,1= (44)

ここで、 ()1,
1 =jD jB を階層 1、 ()1,

2 ,1 pjD jB = を

階層 2、 (), 11,m
B j mD j p −= を階層 m の（境界）領域

と呼び、最後の ()1,m
j mD j p= を m+1 階層の領域ま

たは内部領域と呼ぶ。

縮合を次のように定義する。ある内部領域または

境界領域およびその子すべてを含む領域 Dにおい

て、 MxKx λ= を考える。ここでは、他の領域の成

分は、0 と考える。このような問題を、 DMxKx ;λ=

と書くことにする。この問題は、Dのノードの個数

の次元 ()Ddim を持つ。ここで、

()() jB
m

i
m

pi
DDMxKx j

m
,,1

; ∪∪=
=

λ (45)

を考える。 ()() ,1, j

m

m m

i B ji p
D D

=
∪ ∪ は、境界領域およびそ

の子すべてを含む領域である。

これは、 () ()()1,,dim dimj
m

m m
i pB j iD D=∑+ の次元を持つ。

この問題に対して、

()()j
mjB

m
i

m piDDKx ,1;0 , =∪= (46)

の制約条件をつける。これは、 ()()1, dimj
m

m
i p iD=∑ 個の

式であり、(1)と(2)を連立させて解けば ()jB
mD ,dim

の次元の固有値問題となる。これを、

()() ,1, j
m

m m
i B ji p

D D
=

∪ ∪ から ,
m

B jD に静縮合した固有値問

題と呼ぶ。これも内部領域と同様に、

jB
mDMxKx ,;λ= と書くものとする。これは、一般

に知られている Guyan の静的縮約を含む概念であ

る。以下、親の領域を上位の領域と呼び、子の領域

を下位の領域と呼ぶこともあるが、本稿では、それ

らは同値な用語として利用している。また、最下位

の階層に所属する領域を、その形状から内部領域と

呼ぶこともある。

4.1.2. 縮合の処理
縮合の演算を次のように定義する。本アルゴリズ

ムでは、縮合は K とM に関する縮合からなる。両

者は基本的に同じ手順であるが、詳細な式が若干異

4. 開発したアルゴリズムの定式化

アドバンスシミュレーション 2010.11 Vol.4 73

なることに注意する。まず、1 階層を対象とした K
の縮合は、

() ()

()

1 1,

,

,

1, , ,,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 j j

m m

j

m

m m

j

m m

i i j

m m

p p j
m T m T m T m

j i j B jp j

K K

K K

K K
K K K K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

% #

% #

… …

(47)

から

()∑ =

−−=′
m

jpi ji
m

i
mT

ji
m

jB
m

jB
m KKKKK

,1 ,
1

,,, (48)

を構成する手続きである。全体の K の縮合は、この

手続きを再帰的に実行する手順である。次に、1 階

層を対象としたM の縮合は、

() ()

()

1 1,

,

,

1, , ,,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 j j

m m

j

m

m m

j

m m

i i j

m m

p p j
m T m T m T m

j i j B jp j

M M

M M

M M
M M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

% #

% #

… …

(49)

から

()
1

1,, , , ,
j

m

m m m T m m m m
i pB j B j i j i i i i j

M M M K M K M−
=∑′ = − (50)

を構成する手続きである。全体のM の縮合は、こ

の手続きを再帰的に実行する手順である。すなわち、

静縮合とは、

() ()

()

() ()

()

1 1,

,

,

1, , ,,

1 1,

,

,

1, , ,,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

j j

m m

j

m

j j

m m

j

m

m m

j

m m

i i j

m m

p p j
m T m T m T m

j i j B jp j
m m

j

m m

i i j

m m

p p j
m T m T m T m

j i j B jp j

K K

K K
x

K K
K K K K

M M

M M
x

M M
M M M M

λ=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

% #

% #

… …

% #

% #

… …

 (51)

を

xMxK jB
m

jB
m ′=′

,, λ (52)

()

,
1

1,, , ,
j

m

m
B j

m m T m m
i pB j i j i i j

K
K K K K−

=∑

′

= − (53)

()

,
1

1,, , ,
j

m

m

B j
m m T m m m m

i pB j i j i i i i j

M
M M K M K M−

=∑

′

= − (54)

の固有値問題に順次変換する再帰的な手順である。
次に、モード空間を次のように定義する。まず、

領域 ()() jB
m

i
m

pi
DDj

m
,,1

∪∪
=

における固有値問題を

考える。(1)境界領域の静縮合された固有値問題

jB
mDMxKx ,;λ= の固有ベクトル、および、(2)内部

領域 i
mDMxKx ;λ= の固有ベクトルを基底とする

関数空間(これらの固有ベクトルの線形結合で作ら

れる空間)を考え、その空間の範囲で、

()() jB
m

i
m

pi
DDMxKx j

m
,,1

; ∪∪=
=

λ (55)

を解く。これをモード空間の固有値問題と呼ぶ。す

なわち基底空間の係数ηをモード空間の座標とし

て利用し、任意の x は ηTx = と表現する。この表

現を利用して、 MxKx λ= を

() ()ηλη MTTKTT TT = と変換し、モード空間での

固有値問題に帰着する。 i
mDMxKx ;λ= の固有ベク

トルを、 ()()1, im
i mi pϕ = とおき、 ,; m

B jKx Mx Dλ= の固

有ベクトルを、 jB
m

,φ とする。

4.1.3. モード空間での処理
モード空間の演算を次のように定義する。モード

空間の基底については、次のような方法で求める。

まず、 i
mDMxKx ;λ= の固有ベクトルを

()()i
mi

m pi ,1=φ とおき、 jB
mDMxKx ,;λ= の固有ベ

クトルを、 jB
m

,φ とおく。モード空間の基底は、

()TmTm 0000011 φ=Φ (56)

 …
()Ti

mT
i

m 00000 φ=Φ (57)
 …

() ()()Tp
mT

p
m i

m
i

m 00000 φ=Φ

() () ()()()TjB
mp

jB
mi

jB
m

jB
mT

jB
m i

m
,,,

1
,, φφφφ ""=Φ

(58)

である。ここで、最後の基底は、Guyan の静的縮

大規模固有値計算プログラム Advance/NextNVH

74 アドバンスシミュレーション 2010.11 Vol.4

約条件

() ()

()

()

()

()()

1

1 1, ,

, ,

, ,

1, , ,, ,

0 0 0 0
0 0 0 0
0 0 0 0

00 0 0 0
0 0 0 0 i

m

j j

m m

j

m

m m m

j B j

m m m i

i i j B j

m m pm
p p j B j

m T m T m T m m

j i j B jp j B j

K K

K K

K K
K K K K

ϕ

ϕ

ϕ
ϕ

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

% # #

% # #

… …

(59)

を満たす。すなわち、

()
jB

m
ji

m
i

mi
jB

m KK ,,
1

, φφ −−= (60)

として決定できる。これらの基底を利用して
()()jB

m
p

m
i

mm i
mT ,1 ΦΦΦΦ= ""

とする。 MxKx λ= は、 ηTx = を利用すると、

() ()ηλη MTTKTT TT = となって、モード空間での

固有値問題に帰着できる。また、 ηTx = により、

モード空間座標を物理空間座標に変換することが

できる。ただし、ここで、注意すべきことは、
() 1

, , ,
im m m m

B j i i j B jK Kϕ ϕ−= − のうち 1m
iK − は少ない演算回

数で計算できることである。
ここで、具体的な処理においても

() 1
, , ,

im m m m
B j i i j B jK Kϕ ϕ−= − を求める必要がある。 i

mK は

jB
m

,φ 以下の領域に関する K 行列全体であり、

1−
i

mK 逆行列がすでに求められているため、高速に

処理することができる。具体的には、モード空間で

は、

[]

1

2

3

4

1 11 1 1

2 22 2 2

3 33 3 3

4 44 4 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

00 0 0 ()
0 0 ()

0 ()
()

.

B
T

B B B
T

B B B
T

B B B
T

B B B

I
I

I
I

I
I M G M

I M G M
I M G M

I M G M
sym I

λ
λ

λ
λ

λ
ηϕ ϕ

ϕ ϕ
λ ϕ ϕ

ϕ ϕ

=+
+

− +
+

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (61)

を解くことになり、この演算のみを行うことで十分

である。

4.1.4. 全体の制御手順
 ここまでの道具立てを利用した高速な多階層モ

ード座標結合モード合成法のアルゴリズムは次の

通りである。
(1)内部領域の固有値問題；まず、最下位の階層の領

域（内部領域）k=m における内部領域群の固有値

問題 i
mDMxKx ;λ= で固有値・固有ベクトルを求め

る。
(2)境界領域の固有値問題；その親(k-1 階層)の静縮

合された固有値問題 jB
kDMxKx ,;λ= で固有値・固

有ベクトルを求める。さらに、k をひとつずつ小さ

くして、すべての境界領域 ()mlD jB
l ,1, = の静縮合

された固有値・固有ベクトルを求める。次に、k=1
として、
(3)モード空間での固有値問題；この 2 つの固有値

問題の固有ベクトルを基底として、

()() ,1,
; j

k

k k
i B ji p

Kx Mx D Dλ
=

= ∪ ∪ をモード空間で、固有

値・固有ベクトルを求める。
(4)固有ベクトルの計算；モード空間で求まった固有

ベクトルを ()() ,1, j
k

k k
i B ji p

D D
=

∪ ∪ （実空間とも呼ぶ）に

おける固有ベクトルに変換する。
(5)1 階層下の階層へ；ここの固有値問題の解を改め

て、境界領域の解と考え、さらに k+1 階層の固有

値問題を解く。すなわち、その子を含めたモード空

間での固有値問題を解くステップ(3)に戻る。最終的

に、k=m となるまで同じ処理を行い、最終的な固

有値・固有ベクトルが、一般化固有値問題

MxKx λ= の解である。

4.2. 本手法の特長
4.2.1. 特長とする項目
 ここで開発したアルゴリズムは次のような 3 つ

の特長がある。
・ 新規アルゴリズムにより、高速なモード空間で

の固有値計算が可能である。
・ モード空間では、安定な固有値計算が可能な定

式化を利用している。
・ 物理空間およびモード空間での固有値計算には

最適な固有値解法を採用し、頑強なアルゴリズ

ムとなっている。

(1) 高速な固有値計算

新規に開発したアルゴリズムにより、モード空間

での高速な固有値計算を実現している。式

4. 開発したアルゴリズムの定式化

アドバンスシミュレーション 2010.11 Vol.4 75

()
jB

m
ji

m
i

mi
jB

m KK ,,
1

, φφ −−= において、
1−

i
mK は、

対角ブロック行列であり、縮合過程ですでに計算さ

れているため、本アルゴリズムでは、高速に処理で

きる。
 一般化固有値問題を標準固有値問題に変換した

ことで短時間に固有値を求めることができ、さらに、

その標準固有値問題を一般化固有値問題に変換す

ることで、その固有値を高速に、かつ、安定に求め

ることができる。
 まず、一般化固有値問題 MxKx λ= を解くための、

nn× 行列 K とM のデータを読み込み、領域分割を

実行し、
1D → ()1,

1 =jD jB → ()1,
2 ,1 pjD jB =

→・・・→ ()1, ,1 −= mjB
m pjD → ()mj

m pjD ,1= の

データを作成する。

 内部領域 ()mj
m pjD ,1= の固有値を計算する。

まず、k=m として縮合計算を行い、

()1, ,1 −= kjB
k pjD の固有値を求める。すなわち、

()() jB
k

i
k

pi
DDj

k
,,1

∪∪
=

から jB
mD , に静縮合した固

有値問題を解く。k を 1 だけ減じながら、k が 1 に

なるまで処理を繰り返す。
 ()1,

1 =jD jB におけるモード空間での固有値を求

める。次に ()1,
2 ,1 pjD jB = を求める。以下、k を 1

だけ増加させながら、 ()1,k
j kD j p= のモード空間で

の固有値を求める。k=m となった時点の解が、一

般化固有値問題 MxKx λ= の解である。

4.2.2. 安定な固有値計算
本ソフトウェアでは、モード空間の固有値問題の

等価な変換を行い、安定な固有値計算を実現してい

る。一般化固有値問題から標準固有値問題への変換

を行い、モード空間の固有値を求める。モード空間

では、一般化固有値問題 MxKx λ= を解く必要があ

るが、

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

n

K
λ

λ

0

01

% (62)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=

000
*00
*00

IM (63)

の行列になっている。従って、上記の一般化固有値

問題を等価な標準固有値問題へ変換すると、

() ()()xKMKKxK 212121211 −−=
λ

 (64)

となる。行列 ()2121 −− MKK の固有値と固有ベクト

ルを求めると、
λ
1
と ()xK 21

を求めることができる。

ここで、 1 2 1 2K MK− − は、 ()ijM m= とすると、

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=−−

ji

ijm
MKK

λλ
2121 (65)

となる。また、M の対角項は 1 であったことから、
1 2 1 2K MK− − の対角項は、1 / iλ となる。従って、これ

を変換して、もとの一般化固有値問題の固有値λと

固有ベクトル ()xKK 2121−
を求める。ただし、ここ

で、

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

n

K
λ

λ

0

01
21 % (66)

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=−

n

K
λ

λ

10

01 1
21 % (67)

とおいた。
 モード空間における固有ベクトルの変換は次の

ように行う。 () ii
i

xMKKx ~~1 2121 −−=
λ

を求めること

ができれば、 iji
T

j xx δ=~~ を満たす固有ベクトルを求

めることができる。この直交化の式から、

大規模固有値計算プログラム Advance/NextNVH

76 アドバンスシミュレーション 2010.11 Vol.4

()
() ()jT

j

i
T

ji
T

jij

xKMxK

xMKKxxx
~~

~~~~

2121

2121

−−

−−

=

==

λ

λδ
 (68)

および、 

( ) ii
i

xMKKx ~~1 2121 −−=
λ

 (69)

から、 

( ) ( )iii xKMxKK ~~ 2121 −− = λ  (70)

なので、この 2 つの式から、 ( )1 2
iK x− � は、固有値問

題 iKx Mxλ= の M で規格化された解となっている。 
 モード空間では、シフト可能な一般化固有値問題

への再変換を行う。モード空間での一般化固有値問

題 MxKx λ= を 

( ) ( )( )xKMKKxK 212121211 −−=
λ

 (71)

と変換して解いた通常、標準固有値問題 xAx λ= に

対しては、大きい固有値から計算できるため、この

方法は都合がよかった。ただし、小さい固有値から

計算するためには、 xxA
λ
11 =−

と変換して解く必要

がある。また、求める固有値の数が多い場合にはシ

フトして計算が必要であるが、(1)通常の標準固有値

問題では、固有値範囲を指定できない。(2) xAx λ=
のままシフトして解くとマイナスの固有値も計算

される。(3)上記の理由から slice 処理が有効でない。

の 3 つの理由から、多くの固有値を求めると、固有

値が求まらないか、または、多くの処理時間を要す

ることになる。従って、標準固有値問題の解きやす

いという性質を保存しつつ、次の一般化固有値とし

て、slice 処理を利用できる形式で利用する。 

以下では、 ( ) ( )( )xKMKKxK 212121211 −−=
λ

を 

2121 −−= MKKA  (72)

xKx 21=′  (73)

として、 xxA ′=′− λ1
として、シフトした系 

( ) ( )xxIA ′−=′−−
00

1 λλλ  (74)

を計算する。Lanczos 法の過程では、上式の左辺の

行列の逆を、与えられた U に対して 

( ) UVIA =−−
0

1 λ  (75)

を満たす V を計算する必要がある。A のスパース性

を利用するため、 

( ) AUAIV 1
0

−−= λ  (76)

で計算する。ここで、( ) 1

0I Aλ −
− は A の M 行列と同

じスパース性を保ったまま、疎行列の演算を利用し

て計算できる。 
 
4.2.3. 個別領域の固有値解法 
(1) 検証計算からのフィードバック 

 検証計算において、Block Lanczos 法が安定して

解けないケースが発生したため、subspace 法およ

び Householder 法が、スパース行列、密行列、モ

ード空間用行列に利用できるように、本固有値ソル

バーでは整備されている。ただし、Householder
のスパース行列用は意味がないため整備していな

い。 
 また、いくつかの検証計算において、内部領域お

よび境界領域については、Block Lanczos 法で問題

ない場合がほとんどであった。また、固有値の数が

多い場合には、slice の手法を利用して、安定に解

を求めることができる。ただし、内部領域について

は全体の 0.5%以下のケース(200 回に 1 回という意

味)であるが Block Lanczos では解を求めることが

できない場合もあり、その場合には、subspace 法

をバックアップとして利用する。ここで利用した

subspace 法の部分空間で密行列となる小さなサイ

ズの固有値解法には Jacobi 法を利用している。さ

らに、境界領域については、Block Lanczos 法をメ

インのソルバーとするが、密行列であるため

Housholder 法によるバックアップも可能である。

本システムで解く 3 つの固有値問題では、モード空

間の固有値を求めることが最も不安定であり、いく

つかの手法を検討し、標準固有値問題に変換して

Block Lanczos 法で解く手法が最も安定であること

がわかり、その手法を採用した。ただし、モード空



5. 検証 

アドバンスシミュレーション 2010.11 Vol.4 77 

 

間専用の標準固有値問題向けの Householder 法の

バックアップとして利用可能である。 
 
(2) 個別領域での固有値解法のまとめ 

 内部領域、境界領域、および、モード空間での固

有値問題を解く必要があるが、これらの解法に関し

て、検証計算から次のことがわかった。 
・ モード空間であらわれる特殊な行列の形式を

保ったまま、Householder 変換を行うことは困

難である。 
・ 通常の Householder による三重対角化の方法

では、1 段の処理を終了した時点で、小行列が

密行列となる。 
・ Householder 変換におけるベクトル kw の選択

には自由度が多いため、モード空間の行列の形

式を保ったまま Householder 変換ができる可

能性があるように見えるが、次の理由で不可能

である。1 回の Householder 変換は、鏡像変換

の意味を持つため、行列の形を変えないで（モ

ード空間での行列の形式である、左下にある空

間以外は不変に保ったまま）Householder 変換

を行うことは不可能であるため。 
従って、下記のような手法を整備するとともに、本

固有値ソルバーを頑強な固有値ソルバーとするた

めに、本稿に示す対策を行った。 
これらの手法を手軽に利用するには、ARPACK 

(Arnoldi Package )、SLEPc (Scalable Library for 
Eigenvalue Problem Computations)、MUMPS 
(MUltifrontal Massively Parallel sparse direct 
Solver)、PETSc (Portable, Extensible Toolkit for 
Scientific Computation)、LAPACK (Linear 
Algebra PACKage)、ScaLAPACK (Scalable 
LAPACK)等を利用できる[10] [11] [12] [13] [14] 
[15]。ただし、これらのライブラリを使いこなすこ

とは、かなりの経験とノウハウが必要であることも

付け加えておく。また、どのような解法をどのよう

な基準で選択するかについては、かなりの経験を必

要とすることである。これらのライブラリについて

は別の機会に本雑誌において概説したい。 
 

表 5 利用した個別領域での固有値解析手法 

手法 
固有値 
問題 

内部 
領域用 

境界 
領域用

モード

空間用

BlockLanczos 一般化 ○ ○ × 
BlockLanczos 一般化 ○ ○ － 
BlockLanczos 標準 － － ○ 
subspace 一般化 △ △ × 
Householder 一般化 － △ × 
Householder 標準 － － △ 
（○を利用、△がバックアップ、×は利用不可） 

 
5. 検証 
5.1. 検証問題Ａ 
5.1.1. 解析条件 
 検証問題 A として 1 万自由度（1 節点 2 自由度の

1 次四角形要素約 5000 要素）の問題を解いた。本

問題は、質量行列と剛性行列が同じ非零パターンを

持つようなケースを設定した。本問題は小規模であ

るため、従来型の疎行列用でも密行列用の固有値ソ

ルバーでも簡単に解くことができる。従って、精度

を検証するための検証例題として利用した。また、

1 万自由度であるため、領域分割をしてもひとつの

領域が小さすぎることがない。従って、例えば、5
階層、すなわち、32 領域に分割することも可能で

ある。従って、本ソフトウェアをいくつかの面から

検証するためには、妥当なサイズの検証問題となっ

た。 
ここでは、解析解と本固有値ソルバーで得られた

解を比較した。ここで解析解とは、正確には解析解

ではないが、既存の小規模固有値ソルバーで解いて、

その精度を十分に検証できている値であるという

意味で用いた。 
用いた問題のモード図は次の通りである。検証計

算では、20 次までの固有値を求めて、その精度を

検証した。ただし、この解析対象においては、1,2,3
次の固有値は剛体モードとなる。すなわち、ここで

は、1,2,3 次の固有値が 0 となるような問題を設定

している。 
 



大規模固有値計算プログラム Advance/NextNVH 

78 アドバンスシミュレーション 2010.11 Vol.4 

 

 

 

 

 

 

図 6 検証問題Ａの振動モード 

※ 左上が 1 次、右上が 2 次、順次 3 次から 10 次

までの振動モードを示す。 
 

5.1.2. モード空間の固有値解法の比較 
本固有値ソルバーは、小領域の固有値を求めるこ

ととモード空間の固有値を求めること、および、全

体を統合して固有値を求める部分から構成されて

いる。まず、ここでは、モード空間の固有値を求め

る部分に着目した。 
検証では、まず、モード空間の固有値を求める場

合に、一般化固有値問題に対する Block Lanczos 法

では、反復法を利用しているため、その結果に誤差

を含んでいる場合があることがわかった。一方、モ

ード空間以外の一般化固有値問題では、このような

問題は発生しなかった。 
この問題は、もちろん、（反復法に対する）直接

法である Householder 法で解くことにより、精度

が改善させる。しかし、前章に述べたように、

Householder 法では、モード空間固有の行列の形を

利用して演算量を節約することができないため、高

速な処理をする場合に、Block Lanczos 法を利用す

ることが必須である。従って、Blocked Lanczos 法

および Householder 法に対して、一般化固有値問

題、および、標準固有値問題を解いて、全体の固有

値に対する精度を確認した。 

表 6 各種手法による固有値の比較 

　

解析解 固有値 誤差 固有値 誤差 固有値 誤差 固有値 誤差
0次 0.0 0.0 0.0 0.0 0.0
1次 0.0 0.0 0.0 0.0 0.0
2次 0.0 0.0 0.0 0.0 0.0
3次 28.0 28.2 0.44% 28.2 0.44% 28.2 0.44% 28.2 0.44%
4次 48.2 48.6 0.70% 48.6 0.70% 48.6 0.70% 48.6 0.71%
5次 69.7 69.9 0.30% 69.9 0.30% 69.9 0.30% 69.9 0.30%
6次 95.0 94.7 0.30% 95.2 0.13% 95.2 0.13% 95.2 0.14%
7次 155.4 95.2 38.75% 156.3 0.64% 156.3 0.64% 156.4 0.65%
8次 159.4 156.4 1.91% 160.7 0.83% 160.7 0.83% 160.7 0.84%
9次 167.7 160.7 4.17% 168.0 0.13% 168.0 0.13% 168.0 0.15%
10次 195.1 168.0 13.91% 192.8 1.21% 192.8 1.21% 192.8 1.20%
11次 207.7 192.8 7.18% 206.8 0.44% 206.8 0.44% 206.9 0.40%
12次 274.8 206.9 24.72% 273.8 0.37% 273.8 0.37% 274.0 0.31%
13次 307.3 281.9 8.26% 308.7 0.45% 308.7 0.45% 309.0 0.53%
14次 329.9 311.1 5.68% 328.7 0.35% 328.7 0.35% 329.0 0.28%
15次 333.7 338.5 1.46% 338.9 1.56% 338.9 1.56% 339.0 1.60%
16次 382.2 339.5 11.17% 380.9 0.35% 380.9 0.35% 381.1 0.30%
17次 413.6 419.5 1.41% 413.3 0.09% 413.3 0.09% 413.5 0.02%
18次 432.0 432.7 0.16% 441.7 2.24% 441.8 2.25% 442.2 2.34%
19次 461.8 486.1 5.27% 453.3 1.82% 453.3 1.83% 453.9 1.69%

① ② ③ ④
解法

 
本表は、以下の方法をモード空間の固有値手法とし

て利用した結果である。 
① 一般化固有値問題に対する Block Lanczos 
② 標準固有値問題に対する Block Lanczos 
③ 一般化固有値問題に対する Householder 
④ 標準固有値問題に対する Householder 
この結果、一般化固有値問題の Block Lanczos 法

以外については、解析解と同等レベルまで精度が出

ていることがわかる。 
従って、一般化固有値問題を標準固有値問題に変

換して解くことは妥当と考えられ、かつ、標準固有

値問題に変換した Block Lanczos 法を最終的には

採用することにした。ただし、反復法であるため収

束しない場合もあり、その場合には、バックアップ

として、標準固有値問題に対する Householder 法
を用いるものとする。 
ここで、全体の固有値を求める場合の制御は、内

部領域では 15 個の固有値を求め、境界領域では 15
個の固有値を求め、モード空間では 30 個の固有値

を求める制御方法を利用した。また、Block Lanczos
法には、ブロック数というパラメータがある。この



5. 検証 

アドバンスシミュレーション 2010.11 Vol.4 79 

 

詳細については、ここでは述べないが[10]等を参照

のこと。ここでは、ブロック数は 6 を利用した。以

下特に断らない限り、ブロック数は 6 を利用してい

る。 
 
5.1.3. 精度のパラメータの依存性 

本固有値ソルバーには、いくつかのパラメータが

ある。ここでは、そのパラメータのうち、最小固有

値数と最大周波数に関する感度解析を行い、精度を

比較した。 
本固有値ソルバーでは、内部領域と境界領域およ

びモード空間において部分的な固有値を求めなが

ら、全体の固有値を求めるという手法である。その

際には、全固有値を求めるわけではなく、部分的に

固有値を求め、演算を継続するという手法を利用し

ている。従って、部分的な固有値を求める場合にい

くつの固有値を求めていくかという戦略は全体の

精度を保証する上で重要である。本固有値ソルバー

では、指定された上限周波数以下の固有値またはこ

こで指定する最小固有値数のうち、数の多い方の固

有値を求めるという制御をしている。 
また、20 次の固有値までを求めるため、上限の

周波数は 470Hz 程度となる。上限の周波数の指定

については、反復法系列の固有値ソルバーを利用す

る場合には必ずパラメータとして指定することが

必要である。上限周波数については、次のような注

意が必要である。例えば、470Hz 以下の固有値を求

める場合には、上限周波数の何倍かまでを上限とし

て固有値を求めることで 470Hz 以下の固有値の精

度を上げることができる。また、この上限固有値を

どの程度にするかという基準は最終的な処理時間

に大きく依存するため、非常に重要なパラメータと

なっている。 
ここで、精度を比較する対象は前節で述べた解析

解（この解の妥当性は前節で述べた）である。また、

すべての計算において、ここでは、次の固有値解法

を利用した。内部領域では一般化固有値問題に対す

る Block Lanczos 法、 境界領域では一般化固有値

問題に対する Block Lanczos 法、モード空間におい

ては、標準固有値問題に対する Block Lanczos 法を

利用した。 

さらに、最小固有値を 10 と固定して、上限周波

数を求めるべき値の 470Hz に対して約 20 倍の

10000Hz までとしてみた。また、ここでのテスト

では、多階層のモード合成法を利用しているが、そ

の階層数は 5 としている。本固有値ソルバーでは、

階層数を 1 と指定した場合には、一般化固有値問題

に対する Block Lanczos 法が適用される。この場合

には、モード空間の固有値ソルバーは起動されない。

さらに以下のテストでは、最小固有値数を、10 か

ら、15, 20, 30 と変更してその精度を確認した。 
テストで変更したパラメータのうち、上限周波数

については、その区間に存在する固有値の数に比例

して処理量が増大する。また、最小固有値数につい

ては、その数に比例して処理時間は増大する。 

表 7 精度の周波数依存性; 最小固有値数 10 

方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 10 10 10 10 10 10 10
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4次 28.0 28.2 28.2 28.2 28.2 28.2 28.2 28.2
5次 48.2 48.6 48.6 48.6 48.6 48.6 48.6 48.6
6次 69.7 69.9 69.9 69.9 69.9 69.9 69.9 69.9
7次 95.0 95.3 95.3 95.3 95.3 95.3 95.3 95.3
8次 155.4 156.3 156.3 156.3 156.3 156.3 156.3 156.2
9次 159.4 161.0 161.0 161.0 161.0 161.0 160.9 160.9
10次 167.7 169.2 169.2 169.2 169.2 169.2 169.1 169.1
11次 195.1 195.3 195.3 195.3 195.3 195.3 195.3 195.2
12次 207.7 209.0 209.0 208.9 208.9 208.9 208.8 208.8
13次 274.8 277.1 277.5 276.9 276.8 276.6 276.5 276.5
14次 307.3 309.8 309.8 309.6 309.5 309.3 309.2 309.1
15次 329.9 331.8 331.8 331.6 331.5 331.3 331.2 331.1
16次 333.7 338.1 337.6 337.3 337.2 337.0 336.8 336.8
17次 382.2 384.1 383.9 383.8 383.6 383.4 383.3
18次 413.6 418.9 416.0 415.7 415.3 415.1 415.0
19次 432.0 469.5 438.3 437.5 437.0 436.6 436.6
20次 461.8 562.6 466.6 466.1 465.5 465.2 465.2  

 
表 8 誤差の周波数依存性; 最小固有値数 10 
方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 10 10 10 10 10 10 10
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 - - - - - - -
2次 0.0 - - - - - - -
3次 0.0 - - - - - - -
4次 28.0 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45%
5次 48.2 0.72% 0.72% 0.72% 0.72% 0.72% 0.72% 0.72%
6次 69.7 0.35% 0.35% 0.34% 0.34% 0.34% 0.34% 0.34%
7次 95.0 0.26% 0.26% 0.25% 0.25% 0.25% 0.25% 0.25%
8次 155.4 0.61% 0.61% 0.61% 0.61% 0.59% 0.58% 0.58%
9次 159.4 1.00% 1.00% 0.99% 0.99% 0.98% 0.97% 0.97%
10次 167.7 0.87% 0.87% 0.86% 0.86% 0.85% 0.83% 0.83%
11次 195.1 0.10% 0.10% 0.09% 0.09% 0.08% 0.07% 0.07%
12次 207.7 0.61% 0.63% 0.58% 0.58% 0.55% 0.53% 0.53%
13次 274.8 0.84% 0.97% 0.75% 0.71% 0.65% 0.61% 0.60%
14次 307.3 0.79% 0.80% 0.73% 0.70% 0.63% 0.60% 0.59%
15次 329.9 0.58% 0.58% 0.53% 0.50% 0.43% 0.39% 0.39%
16次 333.7 1.31% 1.17% 1.10% 1.06% 1.01% 0.93% 0.92%
17次 382.2 - 0.50% 0.44% 0.42% 0.35% 0.31% 0.29%
18次 413.6 - 1.27% 0.56% 0.49% 0.40% 0.34% 0.34%
19次 432.0 - 8.66% 1.45% 1.26% 1.16% 1.06% 1.05%
20次 461.8 - 21.83% 1.04% 0.95% 0.81% 0.75% 0.74%  

 



大規模固有値計算プログラム Advance/NextNVH 

80 アドバンスシミュレーション 2010.11 Vol.4 

 

 

表 9 精度の周波数依存性; 最小固有値数 15 

方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 15 15 15 15 15 15 15
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4次 28.0 28.2 28.2 28.2 28.2 28.2 28.2 28.2
5次 48.2 48.6 48.6 48.6 48.6 48.6 48.6 48.6
6次 69.7 69.9 69.9 69.9 69.9 69.9 69.9 69.9
7次 95.0 95.3 95.3 95.3 95.3 95.3 95.3 95.3
8次 155.4 156.3 156.3 156.3 156.3 156.3 156.3 156.2
9次 159.4 161.0 161.0 161.0 161.0 161.0 160.9 160.9
10次 167.7 169.2 169.2 169.2 169.2 169.1 169.1 169.1
11次 195.1 195.3 195.3 195.3 195.3 195.3 195.2 195.2
12次 207.7 208.9 208.9 208.9 208.9 208.8 208.8 208.8
13次 274.8 276.7 276.6 276.6 276.6 276.6 276.5 276.5
14次 307.3 309.4 309.4 309.3 309.3 309.2 309.2 309.1
15次 329.9 331.5 331.4 331.3 331.3 331.2 331.2 331.1
16次 333.7 337.7 337.3 337.0 337.0 336.9 336.8 336.8
17次 382.2 383.7 383.6 383.6 383.5 383.4 383.3
18次 413.6 416.5 415.6 415.3 415.2 415.1 415.0
19次 432.0 438.6 437.5 437.0 436.9 436.6 436.6
20次 461.8 469.8 465.9 465.7 465.4 465.2 465.2  

 

表 10 誤差の周波数依存性; 最小固有値数 15 

方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 15 15 15 15 15 15 15
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 - - - - - - -
2次 0.0 - - - - - - -
3次 0.0 - - - - - - -
4次 28.0 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45%
5次 48.2 0.72% 0.72% 0.72% 0.72% 0.72% 0.72% 0.72%
6次 69.7 0.34% 0.34% 0.34% 0.34% 0.34% 0.34% 0.34%
7次 95.0 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25%
8次 155.4 0.59% 0.59% 0.59% 0.59% 0.58% 0.58% 0.58%
9次 159.4 0.98% 0.98% 0.98% 0.98% 0.97% 0.97% 0.97%
10次 167.7 0.84% 0.84% 0.84% 0.84% 0.84% 0.83% 0.83%
11次 195.1 0.09% 0.09% 0.08% 0.08% 0.08% 0.07% 0.07%
12次 207.7 0.56% 0.55% 0.55% 0.55% 0.54% 0.53% 0.53%
13次 274.8 0.68% 0.66% 0.65% 0.65% 0.63% 0.61% 0.60%
14次 307.3 0.68% 0.66% 0.64% 0.63% 0.62% 0.59% 0.59%
15次 329.9 0.49% 0.47% 0.45% 0.44% 0.42% 0.39% 0.38%
16次 333.7 1.21% 1.08% 1.00% 0.99% 0.96% 0.93% 0.92%
17次 382.2 - 0.40% 0.37% 0.36% 0.33% 0.30% 0.29%
18次 413.6 - 0.70% 0.48% 0.41% 0.39% 0.34% 0.33%
19次 432.0 - 1.53% 1.27% 1.16% 1.13% 1.06% 1.05%
20次 461.8 - 1.74% 0.91% 0.85% 0.79% 0.75% 0.74%  

 

表 11 精度の周波数依存性; 最小固有値数 20 

方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 20 20 20 20 20 20 20
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4次 28.0 28.2 28.2 28.2 28.2 28.2 28.2 28.2
5次 48.2 48.6 48.6 48.6 48.6 48.6 48.6 48.6
6次 69.7 69.9 69.9 69.9 69.9 69.9 69.9 69.9
7次 95.0 95.3 95.3 95.3 95.3 95.3 95.3 95.3
8次 155.4 156.3 156.3 156.3 156.3 156.3 156.3 156.2
9次 159.4 161.0 160.9 160.9 160.9 160.9 160.9 160.9
10次 167.7 169.1 169.1 169.1 169.1 169.1 169.1 169.1
11次 195.1 195.3 195.3 195.3 195.3 195.3 195.2 195.2
12次 207.7 208.8 208.8 208.8 208.8 208.8 208.8 208.8
13次 274.8 276.6 276.6 276.6 276.5 276.5 276.5 276.5
14次 307.3 309.3 309.3 309.2 309.2 309.2 309.2 309.1
15次 329.9 331.3 331.3 331.2 331.2 331.2 331.1 331.1
16次 333.7 337.2 337.2 336.9 336.9 336.8 336.8 336.8
17次 382.2 383.7 383.7 383.5 383.5 383.5 383.4 383.3
18次 413.6 416.9 416.4 415.5 415.2 415.2 415.1 415.0
19次 432.0 439.0 438.3 437.2 436.9 436.8 436.6 436.6
20次 461.8 492.9 469.7 465.7 465.5 465.4 465.2 465.2  

 

 

表 12 誤差の周波数依存性; 最小固有値数 20 

方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 20 20 20 20 20 20 20
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 - - - - - - -
2次 0.0 - - - - - - -
3次 0.0 - - - - - - -
4次 28.0 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45%
5次 48.2 0.72% 0.72% 0.72% 0.72% 0.72% 0.72% 0.72%
6次 69.7 0.34% 0.34% 0.34% 0.34% 0.34% 0.34% 0.34%
7次 95.0 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25%
8次 155.4 0.58% 0.58% 0.58% 0.58% 0.58% 0.58% 0.58%
9次 159.4 0.97% 0.97% 0.97% 0.97% 0.97% 0.97% 0.97%
10次 167.7 0.84% 0.84% 0.84% 0.84% 0.84% 0.83% 0.83%
11次 195.1 0.08% 0.08% 0.08% 0.07% 0.07% 0.07% 0.07%
12次 207.7 0.54% 0.54% 0.54% 0.54% 0.54% 0.53% 0.53%
13次 274.8 0.65% 0.64% 0.63% 0.63% 0.63% 0.61% 0.60%
14次 307.3 0.63% 0.64% 0.62% 0.61% 0.61% 0.59% 0.59%
15次 329.9 0.45% 0.45% 0.42% 0.41% 0.41% 0.39% 0.39%
16次 333.7 1.06% 1.05% 0.96% 0.95% 0.95% 0.93% 0.92%
17次 382.2 - 0.38% 0.33% 0.33% 0.32% 0.30% 0.29%
18次 413.6 - 0.67% 0.44% 0.38% 0.37% 0.34% 0.33%
19次 432.0 - 1.45% 1.20% 1.13% 1.11% 1.06% 1.05%
20次 461.8 - 1.71% 0.85% 0.81% 0.78% 0.75% 0.74%  

 

表 13 精度の周波数依存性; 最小固有値数 30 

方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 30 30 30 30 30 30 30
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3次 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4次 28.0 28.2 28.2 28.2 28.2 28.2 28.2 28.2
5次 48.2 48.6 48.6 48.6 48.6 48.6 48.6 48.6
6次 69.7 69.9 69.9 69.9 69.9 69.9 69.9 69.9
7次 95.0 95.3 95.3 95.3 95.3 95.3 95.3 95.3
8次 155.4 156.3 156.3 156.3 156.3 156.3 156.3 156.2
9次 159.4 160.9 160.9 160.9 160.9 160.9 160.9 160.9
10次 167.7 169.1 169.1 169.1 169.1 169.1 169.1 169.1
11次 195.1 195.3 195.3 195.3 195.3 195.3 195.2 195.2
12次 207.7 208.8 208.8 208.8 208.8 208.8 208.8 208.8
13次 274.8 276.5 276.5 276.5 276.5 276.5 276.5 276.5
14次 307.3 309.2 309.2 309.2 309.2 309.2 309.2 309.1
15次 329.9 331.2 331.2 331.2 331.2 331.2 331.1 331.1
16次 333.7 336.9 336.9 336.8 336.8 336.8 336.8 336.8
17次 382.2 383.5 383.5 383.4 383.4 383.4 383.4 383.3
18次 413.6 416.0 416.0 415.4 415.1 415.1 415.0 415.0
19次 432.0 437.4 437.4 437.1 436.7 436.7 436.6 436.6
20次 461.8 466.3 466.3 465.7 465.3 465.3 465.2 465.2  

 

表 14 誤差の周波数依存性; 最小固有値数 30 

方法 解析解 多階層 多階層 多階層 多階層 多階層 多階層 多階層
階層 1 5 5 5 5 5 5 5

最小固有値数 － 30 30 30 30 30 30 30
上限周波数 1000 400 600 1000 2000 3000 5000 10000
1次 0.0 - - - - - - -
2次 0.0 - - - - - - -
3次 0.0 - - - - - - -
4次 28.0 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45%
5次 48.2 0.72% 0.72% 0.72% 0.72% 0.72% 0.72% 0.72%
6次 69.7 0.34% 0.34% 0.34% 0.34% 0.34% 0.34% 0.34%
7次 95.0 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25%
8次 155.4 0.58% 0.58% 0.58% 0.58% 0.58% 0.58% 0.58%
9次 159.4 0.97% 0.97% 0.97% 0.97% 0.97% 0.97% 0.97%
10次 167.7 0.83% 0.83% 0.83% 0.83% 0.83% 0.83% 0.83%
11次 195.1 0.07% 0.07% 0.07% 0.07% 0.07% 0.07% 0.07%
12次 207.7 0.54% 0.54% 0.54% 0.54% 0.54% 0.53% 0.53%
13次 274.8 0.62% 0.62% 0.62% 0.61% 0.61% 0.61% 0.60%
14次 307.3 0.61% 0.61% 0.61% 0.60% 0.60% 0.59% 0.59%
15次 329.9 0.42% 0.42% 0.41% 0.40% 0.40% 0.39% 0.39%
16次 333.7 0.95% 0.95% 0.95% 0.93% 0.93% 0.93% 0.92%
17次 382.2 - 0.34% 0.32% 0.31% 0.31% 0.30% 0.29%
18次 413.6 - 0.57% 0.42% 0.36% 0.35% 0.34% 0.33%
19次 432.0 - 1.24% 1.18% 1.08% 1.07% 1.06% 1.05%
20次 461.8 - 0.98% 0.86% 0.78% 0.77% 0.75% 0.74%  

 



5. 検証 

アドバンスシミュレーション 2010.11 Vol.4 81 

 

5.1.4. 検証問題Ａのまとめ 
 これらの結果から、まず、モード空間における固

有値ソルバーには、標準固有値問題に変換して

Block Lanczos 法を適用することが最も妥当である

ことがわかった。また、計算パラメータの最小固有

値および上限周波数については、最小固有値は 10
程度および上限周波数は求めたい周波数の 2 倍か 3
倍程度をとればいいことがわかった。 
 
5.2. 検証問題 B 
5.2.1. 解析条件 
 検証例題 B として 160 万自由度の問題を解いた。

これは実用的な例題であり、シェルを中心とした有

限要素法でモデル化を行ったモデルに、マスやバネ

を追加したモデルである。また、質量行列と剛性行

列が異なる非零パターンを持つようなケースとな

っている。 

本検証例題において、精度比較には Strum 列に

よるチェックを利用した。また、Strum 列で正しい

ことが確認されたデータ（具体的には、計算パラメ

ータをかなり安全側にとった条件で得られた結果）

を正しいとして、それ以外のケースを比較した計算

も行った。 

本検証例題で比較した項目は、下記の項目の通り

である。 

・ Strum 列の解析結果から得られた固有値の数

と本固有値ソルバーで得られた固有値数の比較

による解の妥当性チェック 

・ 上限周波数および sパラメータに対する処理時

間および精度の検証 

・ 領域分割数に対する処理時間と精度の検証 

・ 最小固有値パラメータに対する処理時間と精度

の検証 

・ 並列計算時の処理時間と速度向上比の検証 

これらの項目に関し、実施した検証結果を以下の節

で述べる。 

 
5.2.2. Strum列による結果との比較 
 本固有値ソルバーに付属する Strum 列算出機能

を利用して、Strum 列による結果と本固有値ソルバ

ーで得られた結果の比較を行った。まず、対象とし

た問題に対し、50Hz、100Hz、120Hz、200Hz に

ついて、Strum 列を求め、その周波数以下の固有値

の数を求めた。また、本固有値ソルバーでは、周波

数の小さい方から順番に解が得られる。従って、

Strum 列の結果と比較することにより、本固有値ソ

ルバーの妥当性がチェックできる。下図は、Strum
列から得られた結果と本固有値ソルバーで得られ

た固有値を比較したものである。横軸が固有値数で

あり、縦軸が対応する周波数である。また、その次

の図は、周波数 100Hz 付近を拡大して示した図で

ある。本固有値ソルバーで得られた結果上に、

Strum 列で得られた結果が乗っていることから、本

固有値ソルバーで得られた結果と Strum 列で得ら

れた結果は完全に一致していることがわかる。 

0.0

50.0

100.0

150.0

200.0

250.0

0 250 500 750 1000 1250 1500

N-th eigen value [-]

F
re
qu
e
n
c
y 
[H
z]

V2=300,S=4.0

Strum Sequence

 

図 7 Strum 列結果との精度比較 

95.0

96.0

97.0

98.0

99.0

100.0

101.0

102.0

103.0

104.0

105.0

410 420 430 440 450 460

N-th eigen value [-]

F
re
qu
e
n
c
y 
[H
z]

V2=300,S=4.0

Strum Sequence

 

図 8 Strum 列結果との精度比較（拡大図） 



大規模固有値計算プログラム Advance/NextNVH 

82 アドバンスシミュレーション 2010.11 Vol.4 

 

 
5.2.3. 領域分割サイズ依存性 
 本検証例題は、160 万自由度であり、領域分割数

による処理速度と精度を検討する必要がある。本節

では、その結果を示す。まず、前節までで妥当な解

が得られている領域分割数 512 を基準とし、64 領

域～1024 領域まで、2 の累乗数の領域で領域を分

割とし、その他のパラメータを同じにして処理時間

を確認した。ここでその他のパラメータについては、

他の検証ケースで得られた推奨値を利用した。処理

時間については、細分化しすぎると処理時間が遅く

なるが、512 分割以下、または 1 領域の自由度数が

5000 以上であれば、処理時間は変化ない。また、

図 10 から領域数が小さいと精度も得られにくいこ

とがわかる。 

0

10000

20000

30000

40000

size2500 size5000 size10000 size20000 size40000

1024 dom. 512 dom. 256 dom. 128 dom. 64 dom.

Condition (1.6M d.o.f. model)

Ti
m

e[
se

c]

ELAPSED time
CPU time

 

図 9 処理時間の領域分割サイズ依存性 

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200

Frequency [Hz]

ab
s.
 e
rr
o
r 
[H
z]

V2=200, size=2500

V2=200, size=5000

V2=200, size=10000

V2=200, size=20000

V2=200, size=40000

 

図 10 精度の領域分割サイズ依存性 

 
5.2.4. 上限周波数依存性 
 ここでのパラメータは、ユーザの与える上限周波

数：f[Hz]、および、計算内部で設定する上限の周

波数と f との比：s[-]の 2 つのパラメータが重要で

ある。例えば、200Hz までの周波数を求める場合に

は、f=200Hz と指定し、このケースで s=2.0 と指定

すれば、本固有値ソルバー内部では、f・s=200Hz
×2.0=400Hz までの固有値が計算され、自動的に

200Hz までの固有値が出力されることになる。 
 まず、s=4.0 に固定した場合の上限周波数の処理

時間への依存性を確認した。このテスト項目につい

ては、当然上限周波数が大きいほど処理時間は長く

なる。ほぼ周波数に比例する程度に処理時間は増大

する。 
次に、f=200 に固定し、s=1.5, 2.0, 2.5, 3.0, 4.0

とした場合に、その処理時間と精度について検証し

た。処理時間については、当然 f・s に比例する結

果となったが、ここで確認したいこと、および、実

用上重要なのは精度である。精度については、s=2.0
以上とすると、ほぼ 1.0%以下の精度が保証されて

いることがわかる。 
 従って、以上の検証結果から、s=2.0 を推奨値と

した。また、当然ながら、上限周波数 f はユーザの

都合で与えるパラメータである。f はユーザが利用

目的により意識して決めなくてはならないが、s は

数値計算のパラメータでありユーザには簡単には

決められないという事情がある。 

0

10000

20000

30000

40000

125Hz 200Hz 300Hz 125Hz 200Hz 300Hz

S=4.0 S=4.0 S=4.0 S=4.0 S=4.0 S=4.0

1CPU 1CPU 1CPU 4CPU 4CPU 4CPU

Condition (1.6M d.o.f. model)

Ti
m

e[
se

c]

ELAPSED time
CPU time

 

図 11 処理時間の上限周波数依存性（その 1） 



5. 検証 

アドバンスシミュレーション 2010.11 Vol.4 83 

 

 

0

5000

10000

15000

20000

200Hz 200Hz 200Hz 200Hz 200Hz 125Hz 125Hz

S=4.0 S=3.0 S=2.5 S=2.0 S=1.5 S=4.0 S=1.5

1CPU 1CPU 1CPU 1CPU 1CPU 1CPU 1CPU

Condition (1.6M d.o.f. model)

Ti
m

e[
se

c]

ELAPSED time
CPU time

 

図 12 処理時間の上限周波数依存性（その 2） 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200

Frequency [Hz]

ab
s.
 e
rr
o
r 
[H
z]

V2=200,S=1.5

V2=200,S=2.0

V2=200,S=2.5

V2=200,S=3.0

V2=200,S=4.0

 

図 13 精度の上限周波数依存性（その 1） 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 25 50 75 100 125

Frequency [Hz]

ab
s.
 e
rr
o
r 
[H
z]

V2=125,S=4.0

V2=125,S=1.5

 

図 14 精度上限周波数依存性（その 2） 

 
5.2.5. 部分領域最小固有値数依存性 
 内部領域での最小固有値数および境界領域での

最小固有値数については、ひとつの節点の自由度以

上が必要である。例えば、シェルを利用したデータ

の場合には、それぞれ最低 6 個が妥当であると考え

られる。また、本検証問題 B においては、最初に設

定した最小固有値数は 10 である。従って、検証問

題 B では、念のため 6 と 10 の場合を確認した。 
いずれも、処理時間および精度とも大きな変化は

ない（若干、双方を 6 に設定した場合に精度が悪く

なっている）。従って、内部領域での最小固有値数

および境界領域での最小固有値数については、安全

側の 10 に設定することが妥当と考えられる。 

0

10000

20000

30000

MININN=10 MININN=6 MININN=6

MINBND=10 MINBND=6 MINBND=10

Condition (1.6M d.o.f. model)

Ti
m

e[
se

c]
ELAPSED time
CPU time

 

図 15 処理時間の部分領域固有値数への依存性 

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200

Frequency [Hz]

ab
s.
 e
rr
o
r 
[H
z]

MININN=10,MINBND=10

MININN=6,MINBND=10

MININN=6,MINBND=6

 

図 16 精度の部分領域固有値数への依存性 



大規模固有値計算プログラム Advance/NextNVH 

84 アドバンスシミュレーション 2010.11 Vol.4 

 

 
5.2.6. 並列計算と処理速度 
 検証の最後として、並列処理と処理速度の関係に

つき検証した。本固有値ソルバーでは、内部領域お

よび境界領域における固有値を求める場合には領

域ごとの並列化を、モード空間の固有値を求める場

合には周波数に関する並列化および領域ごとの並

列化を行っている。また、縮合計算においても、領

域ごとの並列化を行っている。 
 本固有値ソルバーは、本開発ではアルゴリズムの

開発に主眼をおいたため、並列化については、代表

的な手法を取り入れたのみであり、詳細な並列のチ

ューニングは行っていない。その前提の上で、本ソ

フトウェアで処理時間は、1CPU と 4CPU の処理

時間の比較で、ほぼ 2.5 倍から 3.0 倍の処理速度が

出ていることがわかる。もちろん、処理結果につい

ては、それぞれのケースで完全に一致している。 
通
信
を
含
む

並
列
計
算

通
信
を
含
ま
な
い

並
列
計
算 ０ＰＥ １ＰＥ ２ＰＥ ３ＰＥ ４ＰＥ ７ＰＥ６ＰＥ５ＰＥ

階層０

階層１

階層２

階層３

階層４

階層５

1
2
・
・
・
・
・
・
・
・
n1

1
2
・
・

ni1

1
2
・
・

ni2

1 2 ・ ・ ne

 

図 17 並列計算の方法 

0

10000

20000

30000

40000

V2=125Hz V2=200Hz V2=200Hz V2=300Hz

S=1.5 S=1.5 S=4.0 S=4.0

Condition (1.6M d.o.f. model)

Ti
m

e[
se

c]

1CPU (ELAPSED Time)
1CPU (CPU Time)
2CPU (ELAPSED Time)
2CPU (CPU Time)
4CPU (ELAPSED Time)
4CPU (CPU Time)
8CPU (ELAPSED Time)
8CPU (CPU Time)

 

図 18 並列計算と処理速度（その 1） 

0.0

1.0

2.0

3.0

4.0

V2=125Hz V2=200Hz V2=200Hz V2=300Hz

S=1.5 S=1.5 S=4.0 S=4.0

Condition (1.6M d.o.f. model)

Sp
ee

d 
up

 ra
tio

 [-
]

1CPU (ELAPSED Time)
2CPU (ELAPSED Time)
4CPU (ELAPSED Time)
8CPU (ELAPSED Time)

 

図 19 並列計算と処理速度（その 1） 

 
5.2.7. 検証問題 Bのまとめ 
 ここで実施した計算から、各種のパラメータの推

奨値を得ることができた。ここで得られたのは、内

部領域に対する計算する固有値の最小個数と最大

個数、境界領域に対する計算する固有値の最小個数

と最大個数、モード空間に対する計算する固有値の

最小個数と最大個数の推奨値である。 
また、本問題における特殊なケースとして、自由

度が小さすぎた場合に適用できない手法も存在す

ることもわかった。従って、境界領域の自由度数ま

たはモード空間の自由度数が、指定した値よりも小

さい場合には、Householder 法で実施するというソ

フトウェアとして対策も行った。この方法は、処理

時間と精度にはまったく影響がない。 

表 15 計算パラメータの推奨値 

内容 推奨値

内部領域固有値の最小個数 10 
内部領域固有値の最大個数 500 
境界領域固有値の最小個数 10 
境界領域固有値の最大個数 500 
モード空間固有値の最小個数 10 
モード空間固有値の最大個数 1,000 
境界領域の自由度数の最小 10 
モード空間の自由度数の最小 10 

 



6. 残された課題と将来計画 

アドバンスシミュレーション 2010.11 Vol.4 85 

 

6. 残された課題と将来計画 
 本稿では、既存のアルゴリズムでは大規模問題に

対して適用が困難であったモード合成法に対して、

それを改良し大規模固有値計算に適合したアルゴ

リズムを提案した。そのソフトウェアを開発し、そ

の検証を実施した。ここでは、見込み通りの性能を

得られたことについて報告した。従って、ここで提

案した多階層モード座標結合モード合成法のアル

ゴリズムは、既存の方法を演算量の面で改良した方

法として極めて有用であり、大規模問題が実用的な

演算時間および使用記憶容量での処理が可能であ

ることがわかった。また、ここで提案した多階層モ

ード座標結合モード合成法は、精度の面でも十分に

妥当な計算結果を得ることができた。最後に、検証

計算では、実用的な計算で必要となる計算パラメー

タの決定を行い、今後の本ソフトウェアの普及を進

めるための情報を得た。 
アドバンスソフト株式会社では、新しいアルゴリ

ズムに基づく開発およびその検証を実施してきた

が、現時点では、課題がふたつ残されている。 
そのうちひとつは、本文でも述べたように、詳細

な並列化のチューニングによる並列処理における

処理速度の改善である。または必要に応じて別の並

列化手法も導入する必要があると考えている。階層

型の数値計算アルゴリズムについては、いくつもの

並列化手法が提案されており、それらのいくつかが、

多階層モード座標結合モード合成法に適用できる

と考えている。 
ふたつめの課題は、解析対象のさらなる大規模化

である。アドバンスソフト株式会社では、引き続き

テスト計算として、数千万規模の大規模な固有値問

題に着手したところである。 
これらの 2 点を中心として、広い範囲のユーザの

ニーズに応えるとともに、今後とも飛躍的に増大す

る計算機資源およびその性能に合わせて、さらに処

理効率の高い計算アルゴリズムを開発していく予

定である。本ソフトウェアは、アドバンスソフト株

式会社が独自の改良し販売する構造解析有限要素

法プログラム Advance/FrontSTR の大規模固有値

解析のオプションとして販売および保守を行って

いる。利用者からの声を反映させながら、より頑強

でより高速な固有値ソルバーとしていくことを計

画している。 
 
参考文献 
[1] 長松 昭男,大熊 政明;"部分構造合成法,"培

風館 (1991) 

[2] 松原聖,中村寿,月森和之,矢川元基;"並列処

理による構造解析コードの試作研究 (その

3:固有値ソルバーの並列化手法とその評

価),"日本機会学会第 74 期通常総会講演会

(1997),pp.73-75． 

[3] K.Garatani, K.Kitagawa, K.Matsubara, 

H.Nakamura, K.Tsukimori, G.Yagawa;"Study 

on Parallelization Method of 

Structural-Analysis Code,"High 

Performance Computing and Networking '97 

in Europe.(1997),pp.1044-1046 

[4] 松原聖, 桑原匠人 他;"数千万自由度を対象

とした大規模並列固有値ソルバー,"日本機械

学会 第 19 回計算力学講演会(2006.11.05) 

[5] 戸川隼人;”マトリクスの数値計算,” オー

ム社(1971)  

[6] 一松信;”数値解析,”朝倉書店(1982) 

[7] 村田健郎;”線形代数と線形計算法序説, 

“サイエンス社(1986). 

[8] F.シャトラン著, 伊理 正夫, 伊理由美 

訳;”行列の固有値問題,”シュプリンガー・

フェアラーク東京 (1993) 

[9] 矢川元基,青山裕司;”有限要素固有値解析, 

“森北出版(2001) 

[10] ARPACK;http://www.caam.rice.edu/software

/ARPACK/ 

[11] SLEPc;http://www.grycap.upv.es/slepc/ 

[12] MUMPS;http://www.enseeiht.fr/lima/apo/MU

MPS/ 

[13] PETSc;http://www.mcs.anl.gov/petsc/ 

[14] LAPACK;http://www.netlib.org/lapack/ 

[15] ScaLAPACK;http://www.netlib.org/scalapac

k/scalapack_home.html 


