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1. はじめに 
 Advance/FrontSTR は、先進性と実用性を兼ね
備えた汎用構造解析ソフトウェアとして、進化を続

けている。本ソフトウェアAdvance/FrontSTRは、
大規模並列計算汎用有限要素法構造解析プログラ

ムであり、固体の静的変形解析、固有値解析、熱伝

導解析および線形動解析に関する 3次元解析が可
能である。 
文部科学省の次世代 IT基盤構築のための研究開
発「イノベーション基盤シミュレーションソフトウ

ェアの研究開発」プロジェクトで、アドバンスソフ

ト株式会社は「構造解析ソフトウェア FrontISTR
における材料・幾何学的非線形機能の作成」等の業

務を担当し、従来の成果に幾何非線形・材料非線

形・接触非線形解析機能を開発した。アドバンスソ

フト株式会社では、これらのソフトウェアを実用化

するために独自に改良を進め、商用パッケージソフ

トウェア Advance/FrontSTR3.0として販売保守を
行っている。 

Advance/FrontSTRの特長は、第一に、PC・PC
クラスター・スパコンに対応するスケーラビイリテ

ィである。Advance/FrontSTRは、デスクトップ
PCから PCクラスター、さらにはスパコンとさま
ざまなアーキテクチャーの計算機上で動作する。し

たがって、利用環境や解析規模・解析頻度に依存せ

ず、同一のソフトウェアを使用することが可能であ

る。第二の特長として、大規模並列計算における優

れた並列性能がある。Advance/FrontSTRは、並列
計算を想定した設計であるため、従来ソフトウェア

に比べて非常に高い並列化効率を実現している。第 
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3の特長は、実用的な非線形解析機能である。従来
から実績のある線形静解析、線形動解析、固有値解

析、熱伝導解析等に加え、実用的な非線形解析機能

を継続的に開発している。最新バージョンである

Advance/FrontSTR Ver.3.0では、代表的な材料・
幾何学的非線形解析機能と接触解析機能をサポー

トしている。最後の特長は、他のソフトウェアとの

連成解析である。Advance/FrontSTRにおいては、
流体・音響解析等のソフトウェアと連成させた解析

が可能である。表 1に、Advance/FrontSTR Ver.3.0
の解析機能一覧を示す。 

 
表 1 Advance/FrontSTR Ver.3.0解析機能一覧 

項目 内容 

線形静解析 熱応力解析を含む 
材料非線形 超弾性／弾塑性 

等方／移動／複合硬化 
幾何学的 
非線形 

Total Lagrange 法 
／Updated Lagrange 法 

境界非線形 
（接触） 

Augmented Lagrange 法、 
有限すべり、摩擦 

線形動解析 陽解法／陰解法 
固有値解析 ランチョス法、 

モード合成法（オプション） 
熱伝導解析 定常／非定常（陰解法） 
要素タイプ 4面体／6面体／5面体／シェル 
解析支援 境界条件ステップ制御、リスター

ト、ユーザーサブルーティン 

 
 Advance/FrontSTRの解析機能の計算手法は、幾
何学的／材料非線形／境界非線形静解析において

はTotal Lagrange法およびUpdated Lagrangeを、
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固有値解析にはランチョス法を、線形動解析の過渡

応答問題には直接積分法を採用している。また、非

線形問題では、ニュートン・ラブソン法による繰り

返し計算手法を用いている。本論文では、

Advance/FrontSTR非線形解析に関わる基礎理論
を紹介する。その目的は以下である。 
・Advance/FrontSTRが対象範囲とする解析手法に
関する理論について解説し、理論的裏付けとして提

供する。 
・ユーザーが現象解析に Advance/FrontSTRを適
用する際のモデル定義、解析結果の分析などにおけ

る、理論的参考として提供する。 
 ただし、現時点では Advance/FrontSTR3.0の非
線形解析機能は固体の静的変形解析しか対応して

いないため、本論文は固体の静的変形解析を論じる

ものである。 
 
2. 基礎理論 
2.1. はじめに 
有限要素法の基礎的理論としては、いわゆる連続

体の力学によって定式化がされている。連続体の力

学では、物体の変形状態を記述するために、物質点

という概念を導入し、固体の状態を数学的なモデル

で構成する。物質の任意の点の挙動については、連

続体の点の位置（数学モデルなので、固体中のすべ

て点が 3次元空間で定義された座標の座標値で表
現できることになる）の変化を数学的な方法を用い

て記述する。 
上記に述べたように固体の状態は数学的なモデ

ルに置き換えて、その変形を記述する。本章では、

主にテンソル解析方法を用いて Advance/ 
FrontSTRによる有限要素法解析の基礎理論を記
述する。以下では、複数の成分を持つ変数（ベクト

ルとテンソル等）を太字で、スカラー量を標準字体

で表す。 
なお、テンソル解析においてはお互い双対の関係

にある“共変基底と共変テンソル”および“反変基

底と反変テンソル”などを区別する必要があるが、

物質の変形前と変形後において、空間に固定された

直角座標を共通に用いる場合は、双方とも共通とな

り区別する必要がなくなることから、両者を区別し

ない記述（ベクトルおよびテンソルの基底に対応し

た成分の右下添え字による表現）とする。ただし、

第 6章の接触解析に関しては、非直交な接ベクトル
空間で問題記述を行うため、その区別を深く注意す

る必要がある。 
 
2.2. 連続体力学の基礎 
2.2.1. 運動力学 
連続体力学では、固体や流体に対してその特徴と

応答が空間的な変数で示される滑らかな関数でモ

デリングされることを念頭においている。 
 時刻 t=0の初期状態にある物体を考える。このと

き、初期状態での物体の領域をΩ0で示し、初期配

置と呼ぶこととする。また、その物体に対するモー

ションや変形を表れたとき、その状態は参照配置と

呼ばれ、さまざまな方程式によって表現される。 

また、現配置での物体の領域はΩで定義し、この領

域の境界はΓで定義する。解析対象モデルの次元数

は nSDで定義する。ここで、「SD」は空間の次数で

ある。 
(1) 変形と配置 

 参照配置における物質点の位置ベクトルは 

 
(2.2.1)

で与えられる。ここで、Xiは、参照配置における位

置ベクトルの成分であり、eiは Cartesian座標系の
単位基底ベクトルである。 
 一方、現配置における座標位置は、 

 
(2.2.2)

で与えられる。ここで、xiは現配置における位置ベ

クトルの成分である。 
 物体のモーションは、 

 (2.2.3)

で定義される。ここで、xは時刻 tにおける物質点
Xの位置ベクトルである。この関数φ(X,t)は参照配
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置から時刻 tの現配置へマッピングされてものとし
て考える。このとき、参照配置が初期配置と一致す

るならば、時刻 t=0での任意点における位置ベクト

ル xは物質座標系に一致する。つまり、 

 (2.2.4)

となる。 
 連続体の変形とその応答に関する表記方法は 2
通りある。1つ目は、式(2.2.3)のように物質座標系

Xiと時刻 tを独立な変数として扱う表記方法である。

この表記法は物質表記もしくはLagrangian表記と
呼ばれる。2つ目は、空間座標系 xiと時刻 tを独立
な変数として扱う表記方法である。この表記法は空

間表記もしくは Eulerian表記と呼ばれる。 
本書で用いる表記方法では、空間表記するものを

f(x,t)とし、物質表記するものを F(X,t)で表すことと

する。このとき、この 2つの関係は 

 (2.2.5)

で関連づけられるものとする。 
 
(2) 変位・速度・加速度ベクトル 

変位ベクトル u(X,t)は物質点に対して現位置と
参照位置との差によって表される。 

 (2.2.6)

 
ここで、 であり、式(2.2.4)で示した
モーションを用いて変位ベクトルを 

 (2.2.7)

と表記することもある。 
速度ベクトル v(X,t)は物質点に対する位置ベクト

ルの変化率を表している。つまり、Xに対する物質

時間微分（material time derivative）は一定に保
たれ、次のように定義される。 

 
(2.2.8)

この式(2.2.8)の第 3項では、モーションが変位ベク

トル uに置き換えられている。また、uの上に付い

ているドットは物質時間微分を意味している。 
 加速度ベクトル a(X,t)は物質点に対(する速度ベ
クトルの変化率を表しており、速度の物質時間微分

でもある。このとき、加速度ベクトルは、 

 
(2.2.9)

と定義される。 
 速度ベクトルが空間座標系や時刻 tで表されて
いる場合（つまり、v(x,t)）、この速度の物質時間微

分は、チェーンルールを用いて 

 

 

 (2.2.10)

と表される。このとき、空間座標系で表記された速

度ベクトル v(x,t)が、物質座標系と時間の関数であ

ることに注意が必要である。さらに、右辺第 2項は
対流項であり、 は空間時間微分と呼ばれる。

式(2.2.10)をテンソル表記すると 

 

 (2.2.11)
となる。 
 このように、空間配置で表記されている任意の変

数 xや時刻 tにおける変数の物質時間微分は、チェ
ーンルールを用いて表される。 
 
(3) 変形勾配テンソル 

 有限変形解析の大きな特徴の 1つに変形勾配テ
ンソル Fを考慮することが挙げられる。これは変形

前後の物理量を関連づけるものですべての式に含

まれるものである。変形勾配テンソルは変形前の初

期（物質）配置と変形後の現（空間）配置を関連づ

けるものであり、変形やひずみを表現するために用
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いられる。 
変形勾配テンソル Fの定義は 

 
(2.2.12)

とする。このとき、現配置での位置ベクトル xと物

質配置での位置ベクトル Xは変形勾配 Fを用いて 

 (2.2.13)

として表すことができる。 
  
(4) ひずみ 
 一般的ひずみは 2つの要素ベクトル dX1と dX2

を dx1と dx2に変形するようなスカラー積の変化を

表す。このとき、空間配置のスカラー積 ds2= dx1・

dx2は、初期配置のスカラー積 dS2= dX1・dX2に関す

るものであり 

 (2.2.14)

という関係がある。ここで、Cは右 Cauchy-Green
変形テンソルであり、変形勾配に対して 

 (2.2.15)

という関係で与えられる。また、スカラー積の変化

は初期配置における位置ベクトルに関して 

 (2.2.16)

と関連づけられる。このとき、Green-Lagrangeひ
ずみ Eが定義される 

 
(2.2.17)

Green-Lagrangeひずみは変位勾配に関する項を用
いて次のようにも表される。 

 
(2.2.18)

また、初期配置におけるスカラー積 dX1・dX2は、

空間配置におけるスカラー積 dx1・dx2に関して、左

Cauchy-Green変形テンソル bとして表される。 

 (2.2.19)

同様にスカラー積の変化は 

 (2.2.20)

で表される。このとき、Almansi（Eulerian）ひず
み eは 

 
(2.2.21)

と定義される。 
 
(5) 速度勾配・変形勾配 

 現配置における速度を定義する。速度は式(2.2.8)
で示すように空間座標での関数として表されてい

る。このとき速度勾配テンソル lは次式のように定

義される。 

 
(2.2.22)

 (2.2.23)

この定義については、空間座標系での表記されるこ

とは明白である。そして、現配置における微小要素

の点に関する相対速度の意味を持つ。 
 また、速度勾配テンソルは、次式のように対称部

分と反対称部分と分けられる。 

 
(2.2.24)

 (2.2.25)

 
(2.2.26)

 
(2.2.27)

このとき、変形速度テンソル dは lの対称部分であ

り、スピンテンソル wは lの反対称部分である。 
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さらに、変形速度テンソルの定義式からチェーンル

ールを用いて物質配置での勾配を与えると 

 
(2.2.28)

となる。ここで、変形勾配の定義より

であることから、変形勾配の物質時間微分は、 

 
(2.2.29)

さらに、 であることから、最終的に変

形勾配テンソル lは 

 (2.2.30)

と書き直すことができる。さらに、式(2.2.25)と式
(2.2.30)の 2つのひずみの関係は、 

 
(2.2.31)

と表すこともできる。Green-Lagrangeひずみにお
ける時間微分 は、材料ひずみ速度テンソルと呼ば

れ、 

 

 (2.2.32)

となる。 
初期配置で表される材料ひずみ速度テンソル は、

現配置でも表記することができ 

 

 (2.2.33)
となる。 
 
2.2.2. 応力 
(1) 各種応力の定義 

 非線形問題においてさまざまな応力が定義され

ている。ここでは、3つの応力について定義するこ
ととする。 

図 2.2.1応力の変換の概念図 

Cauchy応力は Cauchy則で定義される。 

 (2.2.34)

公称応力 Pは 

 (2.2.35)

と表せる。第 2 Piola-Kirchhoff応力 Sは、 

 (2.2.36)

と定義される。 
 各種応力は変形の関数に対して相互関係があり、

表 2.2.1にてその関係を示す。このような関係式は
参照配置の法線と現配置の法線の関係を表す

Nansonの関係式を用いて上式(2.2.34)～(2.2.36)の
ような関係になる。 
 

表 2.2.1 応力の変換式 

 Cauchy 
stress 

 

Nominal 
stress 

P 

2nd 
Piola-Kirchhoff 

stress S 

 －   

  －  

  － 
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 (2.2.37)

応力を考える上で、初めに Cauchy応力 と公称応

力 Pは dfで表され、 

 (2.2.38)

となる。ここで、公称応力は第 1 Piola-Kirchhoff
応力と呼ばれることもある。このとき、Nansonの
関係式を用いて、 

 (2.2.39)

となり、以下の式が成り立つ。 

 (2.2.40)

このとき、上式(2.2.43)から公称応力 Pは非対称な

テンソルであることが分かる。また、公称応力 Pは

Fをかけることにより第 2 Piola-Kirchhoff応力 S

に変換される。 

 (2.2.41)
この式をインデックス表記すると 

 (2.2.42)

さらに、展開すると、 

 (2.2.43)

以上より、公称応力（第 1 Piola-Kirchhoff応力）P

と第 2 Piola-Kirchhoff応力 Sの関係は 

 (2.2.44)

である。また、式(2.2.43)および式(2.2.47)より、
Cauchy応力σと第 2 Piola-Kirchhoff応力 Sとの関

係式は、 

 (2.2.45)

となる。この関係は、初期配置から現配置へ push 
forwardした式を意味している。逆に、pull back
した場合は、次式のように表される。 

 (2.2.46)

上記より、Cauchy応力σと第 2 Piola-Kirchhoff応
力 Sの関係は、変形勾配 Fとヤコビアン（体積変化

率）J=detFのみに依存することが分かる。つまり、

この変形勾配 Fが既知量であるならば、Cauchy応
力σ、公称応力 P、第 2 Piola-Kirchhoff応力 Sのど

れかで応力を表すことができる。また、式(2.2.36)
からも分かるようにCauchy応力は対称テンソルで
あり、同様に第 2 Piola-Kirchhoff応力も対称テン
ソルとなる。 
 
(2) 客観性を有する応力速度 

 観測座標系に依存しないテンソルやその速度を

「客観性が有する」という。ここでは、客観性を有

する代表的な応力速度である Jaumann速度、
Truesdell速度、Green-Naghdi速度について簡単
に説明をする。 
(a) Jaumann速度 

Cauchy応力の Jaumann速度は次式で与えられる。 

 
(2.2.47)

ここで、wはスピンテンソルである。右肩の記号「∇」

は客観速度を意味し、「∇J」は Jaumann速度を指
す。 
(b) Truesdell速度,Green-Naghdi速度 

Cauchy応力のTruesdell速度は次式で与えられる。 

 
(2.2.48)

また、Cauchy応力の Green-Naghdi速度は次式で
与えられる。 

 
(2.2.49)

ここで、Ωは主軸系におけるスピンテンソルである。 

 (2.2.50)

Green-Naghdi速度は、Jaumann速度で用いたス
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ピンテンソルに対する材料の回転の定義を角速度

へ変更したものである。また、Truesdell速度と
Jaumann速度の関係は、速度勾配 lを対称テンソ

ル（変形速度テンソル）dと反対称テンソル（スピ

ンテンソル）wに置き換えることができるため 

 

 (2.2.51)
となることから、Truesdell速度は Jaumann速度
におけるスピンテンソルに関する項に加えて、変形

速度に依存する項も含まれていると言える。 
 
(c) 第 2Piola-Kirchhoff応力速度 

時刻 tでの現配置を基準とする時刻τでの第 2 
Piola-Kirchhoff応力 の速度 をと

る。 として求める が時刻 t0の配置を基準

とする第 2Piola-Kirchhoff応力の速度 から push 
forwardしたものであり、以下に関係がある。 

 (2.2.52)

この式を展開すると 

 

 

 

 (2.2.53)
となり、式(2.2.48)で示した Cauchy応力の
Truesdell速度と一致することが分かる。 
 
2.2.3. 保存則 
(1) 質量保存の原理 

 領域Ω内における質量 m(Ω)を以下のように定義

する。 

 
(2.2.54)

ここで、ρ(X,t)は密度である。質量保存の原理とは、

任意の物質領域内の質量が時間に依存せずに 

 (2.2.55)

が成立することを意味する。上式(2.2.55)の空間時
間導関数から導かれ、 

 
(2.2.56)

である。変形後の質量 m(Ω)も一定であるとしてい

る。ここで、密度ρ(X,t)は空間配置における密度で

あり時間に依存することから、基準配置における密

度ρ0(X)=Jρ(X,t) を用いて時間微

分を行うと、 

 
(2.2.57)

となる。ここで、 で

ある。これより、任意の物質領域Ωに対して、 

 
(2.2.58)

となる。この式は連続の式と呼ばれる。 
 また、基準配置における密度ρ0(X)における連続

式は、 

 
(2.2.59)

となる。 
(2) 運動量保存則・角運動量保存則 

 物体に作用する力には物体力ベクトルρbと表面力
ベクトル tがある。ただし、ρbは単位体積当たり
の力、tは単位面積当たりの力である。物体全体に
おけるこれらの和と運動量 の速度は次式の

よう等置される。 
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(2.2.60)

上式を変換し、次のように表すことができる。 

 
(2.2.61)

この式に式(2.2.34)および発散定理を適応すると 

 
(2.2.62)

となり、これが物体の任意の一部分について成立す

ることから 

 
(2.2.63)

となる。これは Cauchyの第 1運動法則または平衡
方程式と呼ばれる。なお、本論文で静的問題だけ議

論しており、左辺はゼロと仮定している。 
一方、角運動量保存則は物体力および表面力のモ

ーメントと運動量のモーメントの速度を 

 

 (2.2.64)
として関連づけている。この式の右辺第 2項の tに

式(2.2.34)を代入し、平衡方程式(2.2.63)を用いると 

 
(2.2.65)

を得る。上式が成立するためには 

 (2.2.66)

すなわち、Cauchy応力は対称である。 
 
(3) エネルギー保存則 

 物体に作用する全エネルギーの変化率は、 

 

 

 (2.2.67)
と表される。ここで、Pintは内部エネルギー変化率、

Pkinは運動エネルギー変化率と定義する。また、領

域Ω内における物体力と表面力の仕事率は、 

 
(2.2.68)

と書ける。このとき、熱量 sや熱流束 qによるエネ

ルギーは、 

 
(2.2.69)

となる。ここで、熱流束項の正負は、熱が物体外へ

放出される方向を負とする。このとき、エネルギー

の保存状態は、 

 (2.2.70)

と表すことができる。以上のことから、物体に作用

する全エネルギー変化率は外力による仕事率と熱

流束によって供給される仕事率が等しくなる。これ

を熱力学の第 1法則と呼ぶ。 
 内部エネルギーの損失量は材料に依存する。弾性

材料の内部エネルギーは変形中に蓄えられ、除荷過

程において解放される。また、弾塑性材料の内部エ

ネルギーは熱等に変換され、材料内部のエネルギー

が失われる。このことから、エネルギー保存の状態

は、 
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 (2.2.71)
と表される。上式に対して、Reynoldの定理や
Gaussの定理を用いて整理すると、 

 (2.2.72)
となる。そして、運動力保存則(2.2.63)より、式
(2.2.72)の積分記号中の最後の項が消える。最終的
に、任意の領域において、 

 
(2.2.73)

が成り立ち、これをエネルギー保存則と呼ぶ。さら

に、熱流束と熱量が発生しない場合には、 

 
(2.2.74)

のみの式で表される。この式は物体の変形エネルギ

ーの変化率はCauchy応力と変形速度テンソルの積
であることを示している。 
 
2.3. 境界値問題と仮想仕事の原理 

 静的な物体の運動を考える。物体表面Γの各点に

おいて単位面積当たりの表面力 、あるいは変位 が、

また物体内の各点において単位体積当たり bの体

積力が与えられるものとする。これらの境界条件を

含め、物体は平衡状態にあるため次の諸条件を満足

しなければならない。 

 (2.3.1)

 (2.3.2)

 (2.3.3)

ここで、式(2.3.1)は式(2.2.63)で示される運動方程
式、 は力学的境界、 は幾何学的境界である。 

式(2.3.1)に変位の変分δuをかけ、物体の全領域に

おける積分をとると以下の式が得られる。 

 

 (2.3.4)

 (2.3.5)

この式は式(2.3.1)~(2.3.3)の弱形式と仮想仕事原理
式と呼ばれる。この式の右辺は外力による仮想仕事

であり、式(2.2.78)と比べ、式(2.3.4)の左辺は変形
エネルギーの仮想変化を表していることが分かる。 
式(2.3.4)が現配置で表したものである。この表示

法は運用上にしばしば面倒な計算が必要になるこ

とがあるため、この式を初期配置まで変換する必要

がある。 

 

 (2.3.6)
上式右辺の後半は以下のように変換する。 

 

 

 

(2.3.7)
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この式を式(2.3.7)に代入すれば、 

 
(2.3.8)

が得られる。この式は第 2 Piola-Kirchhoff応力 S

がGreen-LagrangeひずみEと共役な関係にあるこ

とを示している。 
 式(2.3.6)、(2.3.8)は式(2.3.4)に代入すると、時刻
0の初期配置を基準とする時刻 tでの仮想仕事式が

得られる。 

 

 (2.3.9)

ここで、 を利用した。 

 
3. 有限要素解析の枠組み 
 第 2章では連続体力学の基礎式を解説し、最終的
に仮想仕事に帰着した。本章ではこれを基づき仮想

仕事式を増分分解し、さらに空間離散化し本ソフト

ウェアで用いられる有限要素法における解析手法

について説明する。 
 
3.1. 問題設定 
有限ひずみ理論に基づく非線形解析では、仮想仕

事式や運動方程式を Newton-Raphson法を用いて
陰的に解くことが多い。一般的な非線形有限要素法

では、ある小さな荷重増分量に対する変位量を求め、

それを積み重ねることで最終的な変形状態へ至る

増分解析を行う。 
 図 3.1.1では、現配置の時刻 tnまでが解析済みで

既知量として与えられていることを想定し、Δt秒
後の時刻 tn+1における物体の状態を有限要素法によ

り求めるものとする。このように、時刻 tn+1の未知

の状態の仮想仕事式をLagrange表記するにあたっ
て、時刻 0の初期配置を参照するか、増分を開始す

る時刻 tnの配置を参照するのかによって数値解法

の手法が異なる。前者は total Lagrange法、後者
は updated Lagrange法と呼ばれる。 

図 3.1.1 配置と物体の運動 

 
 以降では、常に解析対象物の時刻と配置を意識し

ながら定式化を進めていかなければならないため、

表記方法について整理を行う。 
 本理論において一貫して用いられている基本ル

ールであるが、初期配置に関する変数（例えば、第

1・第 2 Piola-Kirchhoff応力 Pや S、位置ベクトル

X）は大文字で表記し、現配置に関する変数（例え

ば、Cauchy応力σ、位置ベクトル x）は小文字で表

記している。さらに、本節のような Lagrange表記
においては、時刻に関する表記法を追加しなければ

ならない。 
 
3.2. 仮想仕事式の増分分解 
 図 3.1.1を参照して、時刻 tnまでの状態は既知で

あり、時刻 tn+1における物体の状態を求めるものと

する。このとき、解くべき時刻 tn+1の境界値問題は

以下のようになる。 

 (3.2.1)

 (3.2.2)

 (3.2.3)

式(2.3.4)を参照し、以下の仮想仕事式が導かれる。 
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 (3.2.4)

しかし、時刻 tn+1での配置はこの段階では未知であ

るため、この式を解けるわけがなく、その参照配置

を時刻 t0か、あるいは時刻 tn+1かにとり、以下に示

すような Total lagrange法あるいは updated 
Lagrange法の定式化が行われる。 
 
3.2.1. 幾何非線形を考慮しないときの定式化 
 物体の変形(剛体回転、変形量を含む)は十分小さ
い場合では、初期配置 t0、現配置 tn、未知配置 tn+1

の区別が無視でき、幾何学的には線形問題にみなす

ことができる。この仮想仕事式は、 

 

 (3.2.5)

 (3.2.6)

となる。ここでは、便利上に初期配置 t0をとる。ま

た、 

 
(3.2.7)

は微小変形ひずみであり、σの対称性から

が分かる。さらに、幾何非線形

を考慮しないときの応力－ひずみ関係式は、 

 (3.2.8)

で与えられる。ここで、Dは4階の接線係数とする。 
 仮想仕事式(3.2.5)に対して有限要素離散化を行
うと、 

 
 (3.2.9)

となる。ここでは、 は要素領域と指す。有限要素

ごとに要素を構成する節点の変位を用いて変位場

を次式のように内挿する。 

 
(3.2.10)

このとき、ひずみは式(3.2.7)を用いて次式のように
与えられる（第 5章を参照）。 

 (3.2.11)

式(3.2.10)、式(3.2.11)を式(3.2.9)に代入すると、 

 

 

 (3.2.12)
が得られる。式(3.2.12)は、 

 (3.2.13)

とまとめることができる。ここで、 

 
(3.2.14)

 
(3.2.15)

式(3.2.14)、式(3.2.15)で定義されるマトリックスお
よびベクトルの成分は、有限要素ごとに計算し、重

ね合わせることができる。 
 式(3.2.13)が任意の仮想変位δUについて成立す

ることにより次式を得る。 

 (3.2.16)

一方、変位境界条件式は次式のように表される。 

 (3.2.17)

式(3.2.16)を拘束条件式(3.2.17)のもとで解くこと
により、節点変位 Uを決定することができる。 
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3.2.2. Total Lagrange法 
 時刻 0の初期配置を基準とする時刻 tn+1での内部

仮想仕事の式は、式(2.3.8)から、 

 (3.2.18)
で与えられる。この式における Green-Lagrangeひ
ずみの変分δEについて考える。 
 図 3.2.1に示すように、時刻 tnから時刻 tn+1にお

ける変位の分解式を 

 (3.2.19)

 

図 3.2.1 変位ベクトルの定義 

 
で表されるものとする。また、後に示す非線形有限

要素解析の反復法のことを考え、時刻 tnから時刻

tn+1における反復時の変位増分Δu(k)についても以下

のように定義しておく。 

(3.2.20)

このとき、Green-Lagrangeひずみ En+1は、式

(2.2.21)より、 

 

 

 

 

 

 (3.2.21)
となる。ここで、 

 (3.2.22)

 
(3.2.23)

とする。ここで、有限要素離散式(3.2.10)を利用す
ると 

 (3.2.24)

が得られる（第 5章を参照）。Enは既知なので、En+1

の変分は、 

 (3.2.25)

と表せる。ここで、 

 (3.2.26)

 

 (3.2.27)
である。 
 また、時刻 tnから時刻 tn+1における第 2 
Piola-Kirchhoff応力の分解式を 

 (3.2.28)
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で表されるものとすると、式(3.2.18)は、 

 

 

 (3.2.29)
と与えられる。ここで、δEn+1はΔuの線形関数であ

るので、左辺第 1項目はΔuについて非線形になる。

一方、左辺第 2項目は Snが既知であるから、δEn,NL

のみによってΔuに関して線形であり、右辺第 2項
も既知である。 
 さらに、接線剛性を求めるために、式(3.2.29)に
対して、Δt→0の極限をとり、uに関して 2次以上
となる項ΔS : δEn,NLを無視すると 

 (3.2.30)

となる。ここで、 、 および 

 

 (3.2.31)
である。さらに、時刻での平衡状態においてδu=δun

を仮定し、式(3.2.25)から、 

 (3.2.32)

となる。また、式(3.2.31)の右辺は 

 (3.2.33)

と表せる。したがって、 

 

 (3.2.34)
となる。ここで、仮に が 4階のテンソル と

によって表されるものとすると、 

 (3.2.35)

より、式(3.2.34)に代入して、離散化すると、 

 

 

 

 

 

 (3.2.36)
となる。ただし、 

 (3.2.37)

 
(3.2.38)

 
(3.2.39)

である。 一方、式(3.2.29)の右辺を離散化すると 

 (3.2.40)

となる。ただし、Fn+1は外力を表し、形状関数を用

いる（第 5章を参照）。 

 (3.2.41)
また、 

 
(3.2.42)

は時刻 tnの等価節点力を表している。 
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3.2.3. updated Lagrange法 
 時刻 tnの現配置を参照配置とする時刻 tn+1での内

部仮想仕事式は、 

 
 (3.2.43)

である。ここでは、Green-Lagrangeひずみの変分
は式(3.2.25)で表している。一方、時刻 tn+1の応力は、 

 (3.2.44)

と分解されるものと考えると、内部仮想仕事式

(3.2.43)は、 

 

 

 (3.2.45)
となる。 
 次に、接線剛性を求めるために、Δt→0(Δu=0)の

極限をとると、 

 

(3.2.46)

となる。ここで、 であり、

、 および 

 (3.2.47)
である。さらに、時刻 tnでの平衡状態において

δu=δunを仮定していることから、 

 (3.2.48)

 (3.2.49)

となるので、 

 

 (3.2.50)

となる。ここで、仮に、 が 4階のテンソル と

Grenen-Lagrangeひずみ により、 

 (3.2.51)

と表すことができるとしたとき、式(3.2.50)に代入
して、離散化すると、 

 

 

 

 

 

 (3.2.52)
となる。ここで、 

 (3.2.53)

 
(3.2.54)

 
(3.2.55)

である。一方、式(3.2.45)の右辺を離散化すると 

(3.2.56)

となる。ただし、Fn+1は外力を表し、形状関数を用

いる（第 5章を参照）。 
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 (3.2.57)
また、 

 
(3.2.58)

は時刻 tnの等価節点力を表している。 
 
3.3. Newton-Raphson法 
上記で得られた全体剛性マトリクスは非線形で

あるため、その接線剛性を用い、反復計算手法を利

用し解く必要がる。本ソフトでは、もっとも一般的

に用いられるNewton-Raphson法を採用している。 

図 3.3.1 Newton-Raphson法 

時刻 tnにおけるつり合い状態を考えると、時刻 tn

での内力ベクトル Qnと外力ベクトル Fnは、 

 (3.3.1)

と書くことができる。通常、有限要素法では運動方

程式に対して線形化を行うため、Qnは剛性マトリ

ックス Kを用いて、 

 (3.3.2)

と書くことができる。ここで、unは変位ベクトルで

ある。このとき、式(3.3.1)および式(3.3.2)より 

 (3.3.3)

として解が求められる。しかしながら、非線形問題

では繰り返し計算なしでは式(3.3.1)のようなつり
合い状態を満足しない。以下では、繰り返し計算を

目的とした説明を行う。 
 時刻 tnおよび tn+1での応力状態がつり合い状態に

ある場合、時刻 tnから tn+1までのまでの荷重増分と

変位増分の関係は、図 3.3.1で示すように 

 (3.3.4)

と書ける。そのため、時刻 tnにおけるつり合い状態

での解が得られている場合、次の時刻 tnの外力に対

する変位は、 

 (3.3.5)

となる。このとき、本作業における変位ベクトルに

関する定義は次の通りとする。 

 (3.3.6)

(3.3.7)

ただし、式(3.3.5)を解いただけでは、つり合い状態
を満足していない。そこで、式(3.3.5)で得られる反
復 1回目の変位修正ベクトルを として変位を

更新し、つり合い方程式に代入すると、 

 (3.3.8)

 (3.3.9)

となる。ここで、 は残差荷重ベクトルであり、

を満足したときにつり合い状態となる。 
 さらに、第 k回目の反復における変位修正ベクト
ルは、 

 (3.3.10)

 (3.3.11)
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 (3.3.12)

と書くことができる。ここで、第 0回目の反復時に
おける値を時刻 tnにおける収束解、 

 (3.3.13)

 (3.3.14)

 (3.3.15)

と定義する。 
 Newton-Raphson法では、残差がなくなるまで式
(3.3.9)～式(3.3.14)の手順を繰り返し行い、収束解
を求める方法である。このとき、接線剛性マトリッ

クス の更新は毎回行うものとする。これは、

毎回の更新を行うことで収束解に至るまで反復回

数を少なくすることを考慮したためである。 
 
 上記のような非線形方程式の解は、残差荷重ベク

トルの各成分がゼロになる時点を収束点としてい

る。しかしながら、数値解析において残差荷重ベク

トルがゼロになることはないため、通常はある程度

の許容値を持って収束と判定することとしている。

Advance/FrontSTRでは節点残差力を用いて 

 
(3.3.16)

で収束の判定をしている。ここでは、Fextは外部荷

重ベクトルであり、tolは収束判定閾値である。 
 
4. 材料ライブラリ 
4.1. 線形弾性材料 
変形に伴うひずみと回転が微小であることを前

提とした微小ひずみ理論に基づいた弾性構成式に

ついて説明を行う。ここでは、変形体の参照配置、

現配置などの区別が必要がなく、応力とひずみの定

義も特に意識する必要がなく用いている。 
 線形弾性材料における応力－ひずみ則は、 

 (4.1.1)

で与えられる。ここで、Dは4階の接線係数であり、
温度に依存する可能性があるが、変形状態などに依

存しない材料常数を表している。σは Cauchy応力
であり、εは(3.2.7)で与えられた微小変形ひずみ、
または工学ひずみと呼ばれる線形なひずみである。

一般的な場合では、Dは 21個の成分を持つが、本
ソフトウェアは等方性を持つ線弾性材しか考慮し

ていない。このときラ―メの定数λ, μ次のように表
現できる。 

 (4.1.2)

線形弾性材料の使用前提は変形に伴うひずみと回

転が微小であることであり、これか幾何非線形仮想

仕事式(3.2.17)と対応する。そのため、線形弾性材
料を利用し、幾何非線形を考慮する解析を指定する

と矛盾が生じることになる。そのとき、

Advance/FrontSTRはユーザーから入力した線弾
性係数を利用し、式(4.1.1)を以下のように書き換え、
幾何非線形を考慮した解析を行う。 

 (4.1.3)

このとき、式(4.1.3)から得られる材料接線係数 Dは
変形状態の関数になり、超弾性材料の 1つに St. 
Venant-Kirchhoff超弾性モデルになる。 
 
4.2. 超弾性材料 
超弾性（hyperelastic）材料とは、弾性ポテンシ
ャル関数を持ち、応力はそのポテンシャルを変形や

ひずみの成分によって微分されることにより求め

られる。 

 
(4.2.1)

ここで、 は弾性ポテンシャルである。弾性ポテン

シャルが Green-Lagrangeひずみの関数 として

表されるとき、その弾性ポテンシャルは で表され

るものとする。このときの 2つのスカラー量の関係
は となる。超弾性材料がする仕事

は変形経路に対して独立なものであり、これは弾性

ポテンシャル関数が存在することを示している。こ
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のような挙動は多くのゴム材料の挙動と似たもの

である。変形経路に対する仕事の独立性は、変形状

態 から における参照する単位体積当たりの弾

性エネルギーを考慮したものである。このことは、

第 2 Piola-Kirchhoff応力テンソル と

Green-Lagrangeひずみ は共役な関

係であることから、 

 

 

(4.2.2)

と与えられることになる。そして、材料に蓄えられ

たエネルギーは初期の状態と最終変形状態にのみ

依存するものであり、変形経路（荷重経路）に対し

ては独立である。 
超弾性材の変形は変形履歴に依存せず、その構成

式は第 2 Piola-Kirchhoff応力テンソル Sを利用し

ているため、 Advance/FrontSTRは 3.2.2節に示
した Total Lagrange法を用い解析を行う。 
 
・ 等方性を持つ超弾性材料 

 超弾性材料における弾性ポテンシャルエネルギ

ーは、応力の作用していない初期状態からの等方性

を持った応答から得られるものであり、右

Cauchy-Green変形テンソル の主不変量

、または体積変化成分を除いた右

Cauchy-Green変形テンソル のの主不変量

関数（つまり、 あるいは

）として表すことができる。このと

き、2階のテンソルの主不変量やそれらの導関数は

弾性構成式や弾塑性構成式を表すためによく用い

られることから、これらの数学的な表記について以

下に示す。 
 2階のテンソル Aの主不変量は、以下の式で与

えられる。 

 (4.2.3)

 
(4.2.4)

 (4.2.5)

が文章中で自明であるとき、 と省略する

場合もある。ここで、 が という対称性を

持つなら、 は 3つの実固有値（主値） を

持ち、 

 (4.2.6)

 (4.2.7)

 (4.2.8)

となる。 
 超弾性材料の第 2 Piola-Kirchhoff応力テンソル
Sが式(4.2.1)より与えられ、その接線剛性は以下に
なる。 

 
(4.2.9)

以下では、Advance/FrontSTR内に実装した超弾性
モデルを列挙する。 
 
4.2.1. 多項式超弾性モデル 
 弾性ポテンシャル関数を多項式で表し、そのもっ

とも一般的な式は以下になる。 

 

 (4.2.10)

ここで、 と Diは材料定数であり、Jは変形

Jacobianである。この式は体積変化を除いた変形

エネルギーと体積変化エネルギーを分けて表し、解

析上には便利である。特に材料定数 Diは十分小さ

い場合には、材料の非圧縮性を近似に表すことがで

きる。ただし、本ソフトウェアは完全非圧縮性材料

(Di=0)は表現できない。その弾性構成式は 
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 (4.2.11)
であり、その接線構成式は以下である。 

 

 

 

 

 

 

 
 

 (4.2.12)
 

4.2.2. 低減多項式超弾性モデル 
 低減多項式超弾性モデルは多項式超弾性モデル

の一種である。 

 
(4.2.13)

 
4.2.3. Neo-Hookean超弾性モデル 
 Neo-Hookean超弾性モデルは等方性を持つ線
形則（Hooke則）を大変形問題へ対応できるように
拡張したものである。その弾性ポテンシャルは以下

である。 

 
(4.2.14)

このモデルも多項式超弾性モデルの一種である。 

 
4.2.4. Mooney-Rivlin超弾性モデル 

Mooney and Rivlin超弾性モデルの弾性ポテン
シャル関数は 

 

 (4.2.15)
である。このモデルも多項式超弾性モデルの一種で

ある。 

 
4.2.5. Yeoh超弾性モデル 
 Yeoh超弾性モデルの弾性ポテンシャル関数は 

 

 

 (4.2.16)
である。このモデルも多項式超弾性モデルの一種で

ある。 

 
4.2.6. Arruda-Boyce超弾性モデル 
 Arruda-Boyce超弾性モデルの弾性ポテンシャル
関数は、 
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 (4.2.17)
となる。多項式超弾性モデル材と同じく、ここでは

弾性ポテンシャル関数は体積変化を除いた変形エ

ネルギーと体積変化エネルギーを分けて表す。 
 Arruda-Boyceの弾性構成式は 

 
 (4.2.18)

であり、その接線構成式は 

 

 (4.2.19)
である。 
 
4.2.7. Ogden超弾性モデル 
 Ogden材の弾性ポテンシャルは以下である。 

 

 (4.2.20)

ここでは は変形主軸方向の伸び量であり、 偏差

主軸方向伸びと呼ばれる。特に N=1、 のと

き、(4.2.14)の Neo-Hookean超弾性モデルとなり、
N = 2, α1 = 2, and α2 = -2のとき、(4.1.15)の
Mooney-Rivlin超弾性モデルとなる。 

Ogdenの弾性構成式は 

 
 (4.2.21)

 

 (4.2.22)
である。 
 
4.2.8. 発泡超弾性体モデル 
 以下のモデルは、圧縮性の高い泡状物質の超弾性

の性質を表す。 

 

 

 (4.2.23)
ここではμi, αi, βi材質である。βi は以下のように
Poisson比νiと関連づける。 

 
(4.2.24)

発泡超弾性モデルの弾性構成式は 

 

 (4.2.25)
であり、その接線構成式は 
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 (4.2.26)
である。 
 
4.2.9. St. Venant-Kirchhoff超弾性モデル 
 このモデルは線弾性構成式の直接拡張であり、そ

の詳細は式(4.1.3)に示している。 
 
4.3. 弾塑性材料 
 弾塑性材料の特徴は以下の通りである。 

1. 弾性領域が存在する。 
2. 物体内の応力は一定値（降伏応力）を超える
と、不可逆の塑性ひずみが生じる。 

3. 塑性ひずみの発展と伴い、降伏応力も変化す
る。これを硬化現象と呼ぶ。 

弾塑性変形解析にあたって、まず降伏が始まると

考えられる応力状態を規定する降伏条件が必要に

なる。また降伏が生じたのちの挙動を記述する塑性

流動の法則が必要になり、硬化現象を記述する法則

が必要になる。 
弾塑性変形は金属や土などよく現る現象である。

弾塑性変形挙動は変形履歴に依存し、 
Advance/FrontSTRは 3.2.3節に示した updated 
Lagrange法を用い解析を行う。 
 
4.3.1. 亜弾性－塑性材料モデル 
亜弾性－塑性モデルは、弾性ひずみが塑性ひずみ

と比較して小さい場合に用いられる。このような問

題において構成モデルは変形速度テンソル dを弾

性成分と塑性成分に加算分解し、 

 (4.3.1)

と定義する。上記の仮定を採用すると、弾性応力と

ひずみの関係は弾性ポテンシャル関数より得られ

なくなり、物理的に望ましくないという指摘がある

[9]が、弾性ひずみが十分小さい場合では、これを無
視することができる。 
 以下では、Cauchy応力の Jaumann速度を主と
した構成関係を中心に展開する。弾性部分の構成関

係には亜弾性構成式 

 (4.3.2)

を適用する。また、塑性流れに関する塑性の変形速

度テンソルは、 

 (4.3.3)

として与えられる。ここで、 は塑性率パラメータ

（plastic rate parameter）であり は内部変数で

ある。 は塑性流れの方向を示し、 

 
(4.3.4)

で与えられる。ここで、 は塑性ポテンシャル

（plastic flow potential）である。この塑性流れの
方向は Cauchy応力 と内部変数 に依存する。例

えば、スカラー量の内部変数は有効塑性ひずみ（も

しくは相当塑性ひずみ）（effective [equivalent] 
plastic strain）から構成される。幾何学的な効果モ
デルにおける背応力（back stress）も 2階のテンソ
ルで表記される内部変数である。ただし、この節で

は背応力の存在を考慮せず、内部変数はスカラー量

の集合としている。ここでは、塑性ポテンシャル

は降伏関数(式 4.3.6)と同じである場合では、式
(4.3.4)は関連流れ則と呼ぶ。 
 内部変数に対する発展方程式は、塑性モデルの場

合、 

 (4.3.5)

で表される。ここで、αは考慮した内部関数の数で

ある。塑性パラメータに対する降伏条件 

 (4.3.6)

を用いて、さらに Kuhn-Tuckerの負荷・除荷条件 
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 (4.3.7)

より導かれる(式 4.3.10を参照)。 

塑性負荷状態 における応力は降伏面

に残っており、式(4.3.6)の適合条件の客観速度ゼロ
であることにあたる。そして、 

 
(4.3.8)

が得られる。 
 さらに、式(4.3.8)の中に亜弾性材料の構成関係式
(4.3.2)と塑性流れ関係式(4.3.3)、発展方程式(4.3.5)
を適用すると、 
 

 (4.3.9)

となることから、塑性率パラメータ は 

 

(4.3.10)

となる。 
 式(4.3.2)に式(4.3.10)を代入すると、Cauchy応力
の Jaumann速度と全変形速度テンソルの関係式よ
り、 

 

 (4.3.11)

が得られる。ここで、4階のテンソル は亜弾塑

性接線係数である。さらに、式(4.3.11)を整理する
と、 

 

(4.3.12)

となる。 

 ここで得られた弾塑性構成式は Updated 
Lagrange法の仮想仕事式(3.2.73)に代入すれば、有
限要素法定式化は完成される。まず、Tuesdell応力
速度 と の関係は式(2.2.56)および式(2.2.62)か
ら得られる 

 (4.3.13)

しかし、 の存在より、この式は(3.2.45)に代入
し、得られる要素剛性マトリクスは非対称になり、

計算コストがかかることになる。そこで、塑性変形

における非圧縮性( )と微小弾性ひずみの仮
定からこの項は無視し得る程度と考えられるので、

(4.3.13)を以下のように変換する。 

 (4.3.14)

一方、ダイレイタンシー材料や浸透性のある塑性

材料に対する適用においては、無視できないほど大

きなダイレイタンシー（体積変化）が塑性変形に伴

って発生し、 の仮定が成立しなくなる。この

ような弾塑性材の解析は Advance/FrontSTRの今
後の課程としている。 
 
4.3.2. 移動硬化則への拡張 
 サイクリックな荷重を考える上で、等方性硬化モ

デルでは、金属材料の応力-ひずみ挙動を表現でき
ない。例えば、図 4.3.1節で示したサイクリックな
塑性材料は Bauschinger効果として知られた挙動
を示す。これは圧縮時の降伏ストレッチが引張り時

の初期降伏状態に関連して減少する挙動である。こ

れは降伏面の中心が塑性流れの方向に移動するも

のと考えている。 
図 4.3.1(b)では多軸系での応力状態を示している。
円形の降伏面の拡張（伸び縮み）を考えることを等

方硬化と呼び、降伏面中心の移動を考えることを移

動効果と呼ぶこととする。移動硬化モデルは、通常
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の塑性モデルの他に内部変数として背応力（back 
stress）テンソルαを用い、 背応力αは降伏面の中

心を指し、その背応力の変化は降伏面中心の移動を

記述する。 

図 4.3.1 等方性材料の移動硬化則の概念図 
(a)Bauschinger効果 (b)降伏面の移動と拡大 

背応力が存在するとき、式(4.3.3)は以下のように
書き換える。 

 (4.3.15)

 
(4.3.16)

ここで、κは移動硬化係数である。このとき、適合

条件から求めた塑性速度パラメータは 

 

(4.3.17)

となる。応力速度－全変形速度関係 

 (4.3.18)

であり、連続な弾塑性接線係数は 

(4.3.19)

となる。 
 

4.3.3. 応力更新アルゴリズム 
(1) Cauchy応力の更新計算 

 変形増分量が分かると、式(4.3.11)から Cauchy
応力の Jaumman増分を計算することができる。こ
れから Cauchy応力の物質増分を計算し、増分後の
Cauchy応力を計算する。 

Cauchy応力の Jaumman速度と物質速度の関係
は式(2.2.56)に示している。この式からスピンテン
ソル wを利用し、Cauchy応力の物質増分を計算で
きるが、スピンテンソル w は増分量の線形関数で
はなく、その増分量が大きくなるとその計算誤差が

大きい。本ソフトウェアでは、相対的に計算誤差の

小さい Hughes-Winget回転マトリクスを用い、
Cauchy応力の物質増分の計算を行っている。 
  Hughes-Wingetアルゴリズムは有限変形を有す
る速度形の構成式を以下のように計算する。 

 (4.3.20)

 (4.3.21)

ここではαは背応力であり、テンソル Rは以下のよ

うな中央積分法を用い計算する 

 (4.3.22)
また応力およびひずみ増分は以下を用い計算する。 

 

 (4.3.23)
 
(2) 後退型 Euler積分（radial return法） 

 式(4.3.23)に示した応力増分計算式
は前進型 Euler積分法であり、これの用いアップデ
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ートされた応力や内部変数は次ステップでの降伏

条件を満足せず、つまり、

である。速度依存型塑性材料に対してこの方法を用

いることは、近年の数値解析分野の主流から外れつ

つある。 
前述の方法に代わるものとして、時間ステップの

最後に降伏面から解が飛び出すことを回避する方

法であり、 である。このような方法は

radial return法と呼ばれ、解の精度が良いため、
近年の有限要素法においては積極的に使用されて

いる。 
 後退型 Euler積分において塑性ひずみ増分と内
部変数の増分は、現ステップ内を繰り返し計算した

際の最後の状態において降伏条件が となって

いることが前提条件にある。つまり、応力・ひずみ

などの積分方法は、 

 (4.3.24)

 (4.3.25)

 (4.3.26)

 (4.3.27)

 (4.3.28)

とする。ここで、時刻 における応力・ひずみのセ

ットを で与えている。式(4.3.24)～式
(4.3.28)では、時刻  におけるひずみ等を

としている。つまり、前時間ス

テップにおける収束値に対する更新を行う。 

 

図 4.3.2 関連流れ則における return mappingの概
念図 

このアルゴリズムにおける幾何学的な解釈を以下

に示す。初めに式(4.3.25)に対して塑性ひずみ増分
は、 

 (4.3.29)

で与えられるものとすると、式(4.3.27)は、 

 

 

 

 

 

 

(4.3.30)

となる。ここで、 は弾性予測子

（elastic predictor）の試行応力（trial stress）で
あり、 は plastic correctorである。
Plastic correctorは図で示すように、降伏面を飛び
出している試行応力 （つまり、 ）

を塑性流れ方向を用いて適切な降伏面上に試行応
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力を導くために用いられる。Elastic predictorは全
ひずみ増分から得られ、plastic correctorは塑性パ
ラメータの増分 から得られる。つまり、elastic 
predictorを用いているときには、塑性ひずみと内
部変数は固定されており、plastic correctorを用い
ているときには、全ひずみが固定されている。以上

のことから、plastic correctorを用いている場合の
応力増分は、 

 (4.3.31)

となる。 

 上記 closet point projectionの概念に基づいた降
伏面に引き戻すための plastic correctorは式
(4.3.24)～式(4.3.28)で示される非線形代数方程式
の解は Newtonの反復解法を行うことで求めるこ
とができる。Plastic correctorに関するアルゴリズ
ムでは、全ひずみは一定であり、非線形な代数方程

式の線形化は塑性パラメータの増分 に関して行

われる。そのため、 を関数とする線形化され

た式 を目的関数とする Newtonの反復
解法を行うこととなる。反復回数が 回目のときは、 

 (4.3.32)

となる。ここで、 は反復回数 回目における

の増分量を意味する。 
 塑性状態の更新と降伏条件を前述した式(4.3.32)
に対して適用すると、 

 (4.3.33)

 (4.3.34)

 (4.3.35)

となり、これらの式に対して

を用いて線形化すると、 

 

 (4.3.36)

 

 (4.3.37)

 

 (4.3.38)
となる。ここで、 

(4.3.39)

(4.3.40)

となる。式(4.3.36)と式(4.3.37)を式(4.3.39)と式
(4.3.40)に代入すると、以下に示すマトリックス形
式の方程式が得られる。 

 

 (4.3.41)
ここで、 

 

 (4.3.42)
である。応力増分と内部変数増分に対する解は、 

 

 (4.3.43)

となる。式(4.3.48)から の解は、 

 
(4.3.44)

となる。ここで、 である。 
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 以上のことから塑性ひずみ、内部変数および塑性

パラメータの更新は、 

 

 (4.3.45)

 (4.3.46)

 (4.3.47)

となる。そして、更新された降伏面上に十分な収束

精度を保持した状態の応力状態となるまで、

Newtonの反復法を繰り返す。 
 
4.3.4. Consistent接線係数 
 陰解法においてできる限り正確に近似された接

線を求めることの必要性は、降伏状態の塑性挙動が

極端に大きくなるようなときに効果があり、弾塑性

接線係数が擬似的な負荷もしくは除荷状態に陥る

ことを回避できることで、安定した解を求めること

ができる点にある。ここでは、弾塑性接線係数とし

て用いることのできる積分アルゴリズムの対称な

線形化に基づく consistent接線係数について説明
する。この議論では、前述した後退型 Euler積分に
よるアルゴリズムを前提条件として成り立ってい

ることに注意が必要である。 
 後退型 Euler積分における更新手続きにおいて
consistent接線係数は、 

 
(4.3.48)

で定義される。この consistent接線係数で用いてい
る表記方法は、式(4.3.24)～式(4.3.28)における増分
形式に従っており、 

 (4.3.49)

 (4.3.50)

 (4.3.51)

 
(4.3.52)

となる。ここで、 

 (4.3.53)
である。式(4.3.49)に式(4.3.50)を代入すると、dσと

dqに対する解は、 

 
(4.3.54)

となる。ここで、 

 

(4.3.55)

である。さらに、 とするとき、

適合条件の増分式(4.3.52)を式(4.3.54)に代入する

ことで、 の解は 

 
(4.3.56)

で与えられる。この結果、応力や内部変数の増分に

関する consistent接線係数は、式(4.3.54)より、 

 

 (4.3.57)
となる。 

 関連流れ則、つまり塑性流れの方向と塑性係数が

同一のポテンシャル（つまり、 かつ

）を採用した場合、 は 

 
 (4.3.58)
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式(4.3.57)を用いて consistent 接線係数を求めると、 

 

(4.3.59)

となる。 
 
4.3.5. 降伏関数 
 この節では、Advance/FrontSTRで採用した降伏
関数をまとめる。 
 
(1) Von-Mises降伏モデル 

 von-Mises規準は偏差不変量から成る J2応力が

クリティカルな値に達したときに塑性降伏したも

のとして考える。この条件は数学的には次式で表さ

れる。 

 (4.3.60)

ここで、Rはクリティカルな値であり、内部硬化変

数 qに関する関数である。ここで、静水圧力応力が
von-Mises規準の降伏条件に影響を与えるのでは
なく、偏差応力のみによって塑性降伏条件が決まる

ことに注意しなければならない。つまり、von-Mises
規準は圧力非依存性の材料である。 
 背応力αの存在を考慮し、von-Mises塑性体の降
伏関数は 

 

 (4.3.61)

になる。ここでは、 はmises有効応力と呼ぶ。

は降伏応力、 は初期降伏応力、 は相当塑性ひ

ずみである。 は偏差応力であり、Cauchy応力

の等方応力を とすると、偏差応力は、 

 (4.3.62)

である。また、 は材料のひずみ硬化を

示しており、Advance/FrontSTRは線形硬化式、多

直線近似硬化式及び以下の Swift式 

 (4.3.63)

および Ramberg-Osgoodの式 

 
(4.3.64)

から塑性硬化係数を求める。 
 また、背応力αの発展方程式は以下になる。 

 
(4.3.65)

ここで、κは移動硬化係数である。 

上記の降伏関数を用い、材料が弾性挙動を示す場

合は となり、材料が弾塑性挙動を示

す場合は となる。弾塑性状態での

von-Misesの等価応力が現在の降伏応力 に等し

くなっている。 
 
(2) Mohr-Coulomb降伏モデル 

 砂や岩のような摩擦性材料やダイレイタンシー

効果に対する考慮が必要な材料では、J2流れ則から

成る材料モデルでは現象を十分に表現できない。そ

のため、摩擦性挙動を示す降伏関数が必要になる。

そこで、圧力依存性のない Von-Mises塑性体と圧
力依存性のある塑性体を比較しながら説明を行う。

さらに、このような摩擦性材料が関連流れ則では必

ずしも挙動を近似できるものではないことを示す。

図 4.3.3では摩擦挙動を示すブロックを考えている。
このとき、法線方向の荷重を Nとし、接線方向の荷

重を Qとする。静的な摩擦係数μを持つ粗い表面上

でブロックが静止している。Coulomb則が保持さ
れているとすると、最大摩擦抵抗は Fmax=μNで与え

られる。そして、すべりが発生したときに、降伏条

件を満足したものと考えると、 

 (4.3.66)

となる。降伏面(4.3.66)を図 4.3.3で示す。このとき、
すべり（塑性流れ）の方向は水平方向（Qの方向）

であり、降伏面の法線方向ではない。これはこの塑
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性挙動が非関連流れ則の性質を持っていることを

示している。Mohr-Coulomb規準はこのような挙動
に対する多軸の応力－ひずみ関係を一般化したも

のである。 

 

図 4.3.3 摩擦すべりに対する降伏面 

このMohr-Coulomb規準は、せん断応力とmean 
normal応力で示される応力状態が任意平面に到達
した時点で、材料が降伏状態にあることを基本概念

とした降伏規準である。このときの規準は、 

 (4.3.67)

という状態にある。ここで、はせん断応力であり、

は平面上の法線方向の応力、 は粘着力である。

内部摩擦角 は で定義される。これを主

応力表示すると、 

 

 (4.3.68)

となる。この式は降伏状態あるいは破壊が最大主応

力 と最小主応力 で規定され、中間主応力

がそれらに関与しないことを意味する。この式を応

力不変量 で表記する。ただし、 に関し

Lode角を用いる。 

 
(4.3.69)

とする。すると、応力不変量表示のMohr-Coulomb
式が、 

 (4.3.70)

となる。このとき、 である。 
 式(4.3.68)と式(4.3.70)はπ平面上で直線となる。
主応力の大きさの組み合わせを変化させると、

Mohr-Coulomb式はπ平面上で図 4.3.4(b)に示すよ
うに 6角形となる。 

( a ) 

 
( b ) 

図 4.3.4 Mohr-Coulomb降伏モデル 

(a) Mohr-Coulombモデルの挙動  

(b) Mohr-Coulomb降伏面 

 
(3) Drucker-Prager降伏モデル 
 Drucker-Prager降伏規準では、圧力の影響を表
すために、von-Mises降伏規準に修正を加えて、 

 (4.3.71)

とした。これは滑らかな円すい形をした降伏面にな
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っている。ここで、式(4.3.71)の中の は式(4.3.61)

に示される von-Misesの有効応力(ただし、背応力

α=0) 

 
(4.3.72)

である。 と はそれぞれ摩擦角と粘着力であり、

Mohr-Coulomb材の摩擦角 と粘着力 cから以下の
ように近似的換算できる。 

 
(4.3.73)

このとき、Drucker-Prager降伏面は
Mohr-Coulomb降伏面の内側面もしくは外側面を
通る。ここで、式(4.3.73)中の符号に関して、内側
面の場合は符号が正、外側面の場合は符号が負とな

る。 
 弾性応答には Cauchy応力の Jaumann速度を基
にした亜弾性構成式がよく用いられる。また、関連

型と非関連型両方の定式化ができる。関連流れ則で

は であり、 

 

となる。しかし、関連流れ則を採用するとき、体積

の膨張はしばしば過大評価する。そのとき、以下の

非関連流れ則を採用し、この問題を回避する。 

 

 (4.3.74)

ここでは は膨張角と呼ばれる。 

 
5. 要素ライブラリ 
5.1. 有限要素による空間離散方法 
有限要素法解析では、連続空間を離散化し、有限

個の要素で表す。 

 
(5.1.1)

ここでは、neは要素の数、上付き添え字 hは離散化
された領域を表す。 
 
5.1.1. 有限要素補間 
 本ソフトウェアは変位型有限要素法を使用して

いる。その特徴は、連続体の任意一点の座標および

変位場は有限要素ごとに要素を構成する節点の変

位を用い次式のように内挿する。 

 
(5.1.2)

 
(5.1.3)

ここで、Mと Nはそれぞれ形状（補間）関数と変
位（補間）関数と呼び、mは要素節点数である。特
にMと Nは同じ関数で与える場合、その要素をア
イソパラメトリック要素と呼ぶ。 
 本ソフトウェアでは、すべての要素がアイソパラ

メトリック要素であり、上記の 2つの補間関数を形
状関数と呼ぶ。 
  ここで形状関数 Nは rについて微分可能な連続
関数とする。rは一般的には自然座標と呼ばれてい
る。式(5.1.2)は rから xへの写像を表している。一
方、微分のチェーンルールを用いて 

 
(5.1.4)

へ変形し、式(5.1.3)を用い、変位勾配は以下のよう
に書き換えられる。 

 
(5.1.5)

ここで、rから xへの写像におけるヤコビマトリク
スを Jとした（dx=Jdr）。 
 式(5.1.5)を利用し、式(3.2.1)あるいは式(3.2.26)
に示した変位―ひずみ関係は形状関数より表すこ
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とができる。式(3.2.1)に示した微小変形ひずみは以
下である。 

 

 (5.1.6)

 (5.1.7)

 (5.1.8)

 

(5.1.9)

 
5.1.2. 数値積分 
要素剛性マトリクス、要素質量マトリクス、節点

力などを計算するたび、要素全域に対する積分を行

う必要がある。このような積分は、一般的には複雑

であるために解析的に行うことは困難であるため、

特殊な場合を除いて何らかの数値的な手法（数値積

分）が用いられる。 
数値積分とは積分領域内に複数のサンプリング

点をとり、次式によって積分を近似的に評価する方

法である。 

 
(5.1.10)

ここで、nはサンプリング点の総数であり、 は重

み係数である。 
一方、面荷重、接触力などを計算するときも、要

素面に対する積分を行う必要がある。 

(5.1.11)

ここで、 

 
(5.1.12)

である。ξとηは要素面の自然座標を表している。 
以下では、本ソフトウェアで実装している要素お

よびその形状関数を紹介する。 
 
5.2. ソリッド要素 
5.2.1. 4面体要素 

4面体要素は図 5.2.1に示している自然座標を用
い形状関数を構築する。4面体 1次要素の形状関数
は以下である。 

図 5.2.1 4面体 1次および 2次要素 
4面体要素は図 5.2.1に示している自然座標を用
い形状関数を構築する。4面体 1次要素の形状関数
は以下である。 

ξ 

η 

1 
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ζ 

ξ 

η 
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(5.2.1)

4面体 2次要素の形状関数は以下である。 

 

 

 

 

 

 

 

 

 

(5.2.2)

ただし、 

     
(5.2.3)

とした。 
 

5.2.2.  5面体（ピラミッド）要素 
ピラミッド要素は図 5.2.2に示している自然座標

を用い形状関数を構築する。ピラミッド 1次要素の
形状関数は以下である。 

 

 

(5.2.4)

ただし、 

     
(5.2.5)

とした。 

 

図 5.2.2 5面体（ピラミッド）1次要素 

 
5.2.3. プリズム要素 
プリズム要素は図 5.2.3に示している自然座標を

ξ 

η 

ζ 

1 2 

3 4 

5 
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用い形状関数を構築する。プリズム 1次要素の形状
関数は以下である。 

 

 

 

 

 

 

(5.2.6)

 

図 5.2.3プリズム 1次要素および 2次要素 

プリズム 2次要素の形状関数は以下である。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.2.7)

ただし、 

 
(5.2.8)

とした。 

5.2.4.  6面体要素 
(1) 一般的な取り扱い 

6面体要素は図5.2.3に示している自然座標を用
い形状関数を構築する。6面体 1次要素の形状関数
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は以下である。 

 

 

 

 

 

 

 

 

(5.2.9)

 

図 5.2.3プリズム 1次要素および 2次要素 

プリズム 2次要素の形状関数は以下である。 
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 (5.2.10)
ただし、 

    
(5.2.11)

とした。 
 
(2) 非適合要素 
 完全積分6面体1次要素は曲げ現象を対象とした
解析を扱う場合では、極端に剛な応答が得られ、誤

差が過大になるせん断ロッキング現象が起きる。そ

の解決方法の 1つは要素ごとに独立な自由度を増
やし、ロッキングを回避する方法である。 
 非適合 6面体 1次要素[13]は式(5.1.3)に示した変
位補間式を代わりに、以下の変位補間を行う 

 
(5.2.12)

ここで、右辺第 1項の は式(5.2.9)に示した標準的
なの形状関数であり、右辺第 2項の は式(5.2.9)
で示される形状関数である。 

(5.2.13)

は（一般的な変位とは区別される）変位ベクトル

である。ただし、ここでは非適合モードが要素内に

発生する節点間の曲げモードを想定していること

から、 は節点自由度の追加として扱われず、要素

自由度に対する変位ベクトルとして扱う。 
 

(3) 選択低減積分要素 

完全積分 6面体 1次要素は非圧縮材料を扱う場合
では、極端に剛な応答が得られ、誤差が過大になる

体積ロッキング現象が起きる。その解決方法の 1つ
は体積ひずみに関する項を 1点で積分する方法で
あり、選択的低減積分[14]と呼ぶ。 
 完全積分 6面体 1次要素は式(5.1.6)に示したよ
うに各積分点のひずみを計算するが、選択低減積分

要素はまずひずみの体積成分と偏差成分を分解す

る。 

 

 (5.2.14)

そして、この第 1項目の は要素の体積平均値で

評価した で置き換え、各積分点のひずみを計算

する。 

 (5.2.15)

 
5.3. シェル要素 

 
 

           ζ 
                η 
 
            ξ  itop 
                                 Vi 

z                               ibottom 
      y                           
       x                              

                                     

図 5.3.1 アイソパラメトリックシェル要素 
 
5.3.1. アイソパラメトリックシェル要素 
 シェル要素は構造要素であり、薄肉構造物の解析

に用いられる。本ソフトウェアはアイソパラメトリ

ックシェル要素を使っている。アイソパラメトリッ

クシェル要素は 3次元ソリッド要素の厚み方向に
つぶすように作られているため縮退(degenerated)
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要素とも呼ばれている。 
 図 5.3.1はアイソパラメトリックシェル要素のモ
デル図を示す。図 5.3.1より、シェルの中立面は自
然座標系ξ-ηと表し、シェルの厚み方向の座標はζと

表す。さらに、ξ、ηとζは要素内-1から 1まで変化
すると仮定すると、シェル要素内の任意一点の座標

は 

 
(5.3.1)

で表せる。ここでは Viはシェルディレクターであ

り、その長さはシェルの厚さ tである。 
 時間ステップ n（時刻ｔ）から時間ステップ n +1
（時刻 t’＝t＋⊿t）までの変位増分ベクトル uは以

下となる。 
 
 

 

 (5.3.2)

ここで、Iは単位テンソル、 はディレクターベ

クトル に対する時間ステップnから時間ステッ
プ n+1までの有限回転テンソルである。 
シェルのディレクター の時間ステップ n～

n+1までの有限回転に関して、回転の間に回転軸は
変化しないものと仮定する。このとき回転軸を表す

ベクトルを軸性ベクトル とし、その大きさが有

限回転角ωを表すとする。 

；軸性ベクトル (5.3.3)

  ：有限回転角 (5.3.4)

次に軸性ベクトルを用いて反対称マトリックス

を定義する。 

 

(5.3.5)

上記において、 はディレクターベクトル

の第 i成分であり、回転マトリックス により変

形の都度、更新するものとする。有限回転は微小回

転の集まりと考えれば、有限回転テンソルは以下の

ようにあらわすことができる。 

 

 

(5.3.6)

式(5.3.6)を式(5.3.2)に代入すれば、変位ベクトル
の離散形が得られる。特に、回転角は十分小さい場

合では、以下の式が得られる。 
 

 (5.3.7)
 

5.3.2. MITCシェル要素 
シェル要素の大きさとシェルの厚さの比は大き

くなると、Shear Lockingする問題があることが知
られている。この問題を回避できるMITC要素が注
目されている。 
 Shear Lockingは実際によく使用される低次な
要素に関して面外せん断ひずみエネルギーが過剰

に評価されることより発生すると言われており、

MITC要素ではその対策として面外せん断ひずみ
成分を取り去る方法がとられている。 
 その具体的方法として、まず、面内ひずみは 3次
元ソリッドと同様に変位の形状関数を微分して求

める。次に面外ひずみについては、サンプリング点

について面外ひずみを求めたのち、要素内任意点に

ついてはサンプリング点を補間することにより求

める。 
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 また、有限回転の場合にも適用できるように、埋

め込み座標系でのひずみ成分を用いる。埋め込み座

標としては、アイソパラメトリック要素における自

然座標系を用いる。 
 
(1) MITC4シェル要素 

 

図 5.3.2面外せん断ひずみのサンプリング点
(MITC4) 

MITC4シェル要素[15]では、面外ひずみの補間
に用いるサンプリング点は図 5.3.2に示す A,B,C,D
の 4点とする。このとき、面外ひずみの計算は下式
に示す。 

 

(5.3.8)

 
(2) MITC3シェル要素 

 

図 5.3.3 面外せん断ひずみのサンプリング点
(MITC3) 

MITC3シェル要素[16]では、面外ひずみの補間
に用いるサンプリング点は図 5.3.3に示す各辺の中
央点をとっている。ξ、ηは要素内 0から 1まで変化
すると仮定し、図 5.3.3には各サンプリング点の自
然座標を示している。このとき、面外ひずみの計算

は下式に示す。 

 

 

 

(5.3.9)

 
6. 接触解析 
 接触問題は一種の境界条件に起因する非線形現

象である。ここでは、接触問題が固有する特徴とそ

の解法、特に有限要素法定式化を体系的に紹介する

ものである。ここでは、有限すべりによる接触非線

形を注目し、接触の接線剛性マトリクスを得ること

を主な目標とする。または、本ソフトウェアは微小

すべり問題を対応している。微小すべり問題の接触

剛性マトリクスは有限すべり接触接線剛性マトリ

クスの特例であり、その内容は本章の最後の部分で

導入する。 
 まず、第 6.1節では接触力学の基礎式を紹介し、
変形問題の接触拘束条件は導入する。続く第 6.2節
で、接触を考慮した仮想仕事原理式を導入し、そこ

で接触拘束条件の処理方法を紹介する。最後に第

6.3節で得られた仮想仕事式を有限要素法により離
散化し、有限要素法に対応した接触剛性マトリクス

を導く。 
 
6.1. 接触力学 
 本節は接触問題に関わる基本方程式を紹介する。

ここでは 2物体の接触に関わる諸式を示すが、これ
らを多体間の接触問題へ拡張することもできる。 
 

ξ 

B(0,0.5) 

A(0.5,0) 

C(0,5,0.5) 

η 

B(-1,0) 

C(0,-1) 

D(1,0) 

ξ 

η A(0,1) 
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6.1.1. 表記法 
本節では複数の変形体が有する場合の変形体の

基準配置、現配置の表示方法を示している。 
 
(1) 基準配置 

 2つの物体の接触問題を考える。両物体の初期配

置は既知であり、基準配置と呼ぶ。基準配置の諸変

数は大文字のローマ、あるいはギリシャを示す。基

準配置中第 i番目の物体は と示す。 

 中の任意一点は と示す。 の境界は

で示す。 と の間に接触可能な部分はそれ

ぞれΓ(1)とΓ(2)で表す。 
 
(2) 現配置 

 現配置においた諸変数は小文字のローマ、あるい

はギリシャを示す。現配置内の一点は x(i)で表す。

基準配置の各点から現配置の各点への同相写像

を存在することが仮定する。ある時刻の写像は下付

き文字 tと表す。そして、ある時刻 tの一点の現在

位置は , または とも表

れる。同様に、各物体境界の現在位置もΓ(i)からの

φ(i)写像から得られる。境界面の現在配置は

で示す。ここでは、時刻が特定でき

る場合では、下付き文字 tを省略できる。 
 
6.1.2. 接触キネマティクス 
 接触解析のすべては接触表面上行うため、接触面

のキネマティクス関係を明らかにする必要がある。

また、接触面キネマティクスを便利に議論するため、

はじめに接触座標系を定義し、続きの議論はこの座

標系の中で行う。 
 

(1) 接空間基底 

図 6.1.1 接ベクトル空間 

境界面上の任意点の基準配置および現配置の位

置は以下のように書かれる。 

 (6.1.1)

 (6.1.2)

この写像は接触面のパラメータ化と呼び、 はパラ

メータである。 
接触面上の点をpで表す。点pはパラメータを と

して、曲線 p( )を描くとする。この曲線の接ベクト
ルが得られる。点 pにおけるすべての可能な接ベク
トルの作る空間を、点 pにおける接触面の接ベクト
ル空間または接空間と呼ぶ。 
 現配置の接空間基底は以下のように得られる： 

 (6.1.3)

またその計量テンソルを となる。 
 3次元空間では、2つの基準ベクトルが分かれば、
下式を使って、表面の法線ベクトルを計算できる。 

 
(6.1.4)

 
(2) 法線方向距離と界面速度 

本節では両接触面の距離および面間相対速度を

定義する。まず一点から相手表面上の最近傍点（投

影点とも呼ぶ）を定義する。この一点から投影点ま

での距離は法線方向距離であり、最近傍点の時間微

分からすべり速度を測れる。 

n 

γ 

p 
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任意であるが、物体 は slave物体、物体 は

master物体とする。離散化数値解析では slaveと
master物体の選定は解析収束性などに影響を与え
るが、ここでは特に区別する必要がない。 
まず、Slave物体の一点 のmaster物体への投
影点 は最近傍点と定義する。最近距離は 

 

図 6.1.2 最短距離、投影点 

 

 
(6.1.5)

として与えられ、投影点 は以下のように

定義される。 

 
(6.1.6)

の位置は両接触体の変形および座標値 に依

存する。この事実を強調するため、以下の式を導入

する。 

 (6.1.7)

ここで、上バー記号は投影点と関わる変数であるこ

とを示す。 
 そして、slave物体の一点からその投影点の距離
ベクトルは 

 (6.1.8)

となる。ここでは 

 (6.1.9)

として与えられ、その距離は 

 (6.1.10)

である。続いて、すべり速度を導く。はじめに slave
物体の一点 とその接触点 を考慮する、この 2
点の法線方向の相対位置 である場合、この 2
点は空間の同じ位置と維持するので、 

 
(6.1.11)

が得られる。そこで 

 
(6.1.12)

 

 

 

 

(6.1.13)

式(6.1.13)と式(6.1.12)を式(6.1.11)に代入し、接触
点の相対すべり速度は以下の式に与えられる。 

 (6.1.14)

最後に、すべり速度ベクトル の成分 は、

の定義式(6.1.6)より求められる。この定義から
は接触面と直交することが分かり、その

式は 

 (6.1.15)

となる。この式の物質時間微分をとり、さらに式

(6.1.10)と式(6.1.13)を代入すると 
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(6.1.16)

が得られる。この式を整理すると下の計算式が得ら

れる。 

 (6.1.17)

ここで 

 (6.1.18)

特に接触点の貫通量 gNが 0の場合では下式が得ら
れる。 

 (6.1.19)

 
6.1.3. 接触拘束条件 
 本節は、接触面法線方向の非貫通拘束条件および

接触面接線方向の摩擦拘束条件を説明する。 
(1) 接触力 
 接触力は Cauchy応力から得られる。 

 (6.1.20)

この接触力を接触面の法線とすべり方向へ分解す

ると 

 (6.1.21)
となる。 
 
(2) 非貫通拘束条件 

 連続体力学では、2点は同じ位置を有することを
許容しない。そのため、両物体が接触する場合では、

この条件は以下のように言い換える：slave物体の
任意点はmaster物体に貫通することができない。
この条件より、接触面法線方向の拘束条件は、 

 (6.1.22)

 (6.1.23)

 (6.1.24)

とする。ここでは、式(6.1.22)は接触点同士間の距
離が必ずゼロ以上とする非貫通条件を示し、式

(6.1.23)は接触力が圧縮力であることを示している。
最後の式(6.1.24)は相補性条件を述べている。すな
わち、接触していないときには圧縮力は発生しない、

代わりに圧縮力が存在している場合では、貫通量が

ゼロである。最適化計算分野では、以上の 3式は
Kuhn-Tucker条件または Karush-Kuhn-Tucker条
件と呼ばれる。 
 
(3) 摩擦拘束条件 

接触面内に摩擦効果が存在する場合、接触面内の

すべり速度ベクトル と接線方向接触力 に関し

て、以下に示す摩擦条件を考えることができる。 

 (6.1.25)

 
(6.1.26)

 (6.1.27)

 (6.1.28)

ここで、 はすべり限界関数であり、すべり発生条

件を表している。例えば、クーロン摩擦を考える場

合では、摩擦係数を µとすると、すべり限界関数は

以下のようになる 

 (6.1.29)

式(6.1.26)、式(6.1.27)はすべりが接触面内に作用す

る接触力ベクトル に生じることを表しており、

式(6.1.28)は面内接触力が摩擦限界に到達したとき

に限ってすべりが発生することを表している。また、

はすべりパラメータであり、その値は条件

より決定される。 

本ソフトウェアは Coulomb摩擦則を採用してい

る。Coulomb則によれば、 のとき、接触す
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る両物体間すべりなし、粘着摩擦、または静摩擦状

態と呼ぶ。または、すべりがはじめる瞬間 で

あり、この状態はすべり摩擦、または動摩擦状態と

呼ぶ。 

実際問題として、物理的には接触力が摩擦限界に

到達しなくでも微小な相対変位を生じるし、また数

学的な取り扱いの観点からも摩擦力が相対変位に

対して不連続に変化することは好ましくない。そこ

で Coulomb摩擦則は以下のように規則化されるこ

ともある。 

 
6.2. 接触問題の弱形式 
 第 6.1節では、接触問題を強形式で示した。この
章では有限要素法定式化の準備として、接触問題の

弱形式を議論する。 
 
6.2.1. 変分形式 
有限要素定式化は一般に変分形式を基本としてい

る。ここでは、接触問題を含む連続体力学の問題の

変分式を導く。 

 式(2.3.1)~(2.3.3)を参照し、接触を考慮した現配

置下のつり合い方程式は以下になる。 

 

(6.2.1)

 
(1) 接触積分 

つり合い方程式(6.2.1)に任意の重み関数 を乗

じ、領域ω全体に積分すると次式が得られる。 

 
(6.2.2)

ここで、第 1項について部分積分を用いて展開し、
重み は変位境界 では零である制約を加え、次

式が得られる。 

 

 (6.2.3)

ここで、 は接触面を表している。 
2物体接触問題の弱形式は式(6.2.3)の加算から得

られる。 

 

 (6.2.4)
ここでは、 

 

 

 
である。または、作用力と反作用力の法則から 

 (6.2.5)

であり、この結果を式(6.2.4)の第 3式に代入し、 

 
(6.2.6)

が得られる。 
 重み関数 は仮想変位である場合では、式

(6.2.4)は仮想仕事原理式を示す。このとき、式
(6.2.6)は接触に関する仮想仕事である。 
 
(2) 仮想仕事原理式 

重み関数 は仮想変位であるとき、式(6.2.6)は 
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(6.2.7)

になる。この節では式(6.2.7)を使いやすい形に変換
する。 
(a) 距離関数の変分 

 距離関数(6.1.10)の変分は以下になる。 

 

 

 

 

(6.2.8)

 
(b) 距離ベクトル関数の変分 

 式(6.1.8)から 

 

(6.2.9)

である。 
 
(c) 仮想変位の接触積分 

 まず式(6.2.7)中の接触力を法線方向とすべり方
向に分解する。 

 (6.2.10)

そこで、式(6.2.8)、式(6.2.9)と式(6.2.10)を式(6.2.7)
に代入すると 

 

 

 (6.2.11)
が得られる。上式の右辺第 1、2項はそれぞれ接触
面法線方向とすべり方向の仮想仕事を示している。 

 ここでは、すべり方向の力成分 およびすべり

距離ベクトルの変分 を以下のように定義し 

 (6.2.12)

 (6.2.13)

式(6.2.11)は以下のように変換される。 

 
(6.2.14)

 
(6.2.15)

本節でここまで得られた結果を第 6.1節に得られ
た接触拘束条件を加え、接触問題の支配方程式は以

下のようにまとめる。 

 

 (6.2.16)
その制約条件は 

 

 

 

 

 

 

 

となる。 

 ここまでは、接触に関する仮想仕事 を得るため、
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slave接触面 に沿った面積積分を行う必要があ

ることが分かった。しかし、式(6.2.16)に示した接
触拘束条件が不等式であり、計算上にそれらの不等

式を等式へ変換する必要がある。このような不等式

の処理方法は最適化計算分野でいろいろな方法提

案されたが、本ソフトウェアは有効セット(active 
setまたは active constraint)法を採用する。ここで
は、有効接触点は接触状態（貫通量 ）である

状態に有する空間点と意味し、拘束条件は有効接触

点だけを対象とし、 に関わる積分計算はすべて有

効接触領域内で行うことになる。 
ある接触点は有効であるかどうかを明示的に表

すため、次節では、記号<・> 

 
(6.2.17)

また非連続関数記号 H(・) 

 
(6.2.18)

を採用する。 
 次の節では、等式化された接触拘束条件の取り扱

いについて議論する。 
 
6.2.2. 接触拘束条件の処理方法 

 この節では仮想仕事式(6.2.4)を議論する。ただし、
接触処理に注目したいので、 項の表現について集

中的に議論する。 
最適化計算分野では、式(6.1.22)～(6.1.24)に示し

た Kuhn-Tucker条件に対し、いろんな解法を提案
された。これらの方法を転用し、有限要素法解析で

はよく使われる方法は Penalty関数法、Lagrange
乗数法があるが、本ソフトウェアではこの 2つ方法
のメリットを取り入れた Augmented Lagrange法
を採用する。本節では、Penalty関数法、Lagrange
乗数法および Augmented Lagrange法を説明し、
それぞれの長点および短点を議論し、Augmented 
Lagrange法を採用した理由を明らかにする。また、
一部の接触拘束は多点拘束条件とみなすことがで

きるので、直接消去法についても説明を行う。 

 
(1) Lagrange乗数法 

 Lagrange乗数法は新たな独立変数 と を導入

し、式(6.2.16)を以下のように書き換える。 

 (6.2.19)

 
(6.2.20)

ここでは、新たに導入した変数 と は Lagrange
乗数であり、 と は貫通量およびすべり量である。 
 ここでは、式(6.2.19)は接触を考慮した仮想仕事
式であり、式(6.2.15)から、 と はそれぞれ接触

面の法線方向とすべり方向の力であることが分か

る。そのため、Lagrange乗数法は一種な混合解法
であることが分かる。 
 Lagrange乗数法は後と紹介する Penalty関数法
および Augmented Lagrange法と比べ、active set
は正しく選択した場合では反復計算が必要なく、正

確に接触力を得られるが、以下の欠点がある： 
・ 変数の数が増える。 
・ 得られた方程式は不定である。 
 数値計算で(6.2.19)～(6.2.20)を解くとき、変数の
数が増えると計算コストがかかる。または、並列計

算を利用したとき、メモリ管理および計算資源の配

分も難しくなる。一方、方程式の正定性を失うと、

線型方程式ソルバーでの取り扱いが難しくなり、反

復法で解くと収束性が悪いこともある。 
 
(2) Penalty関数法 
 Penalty関数法は、制約条件を満たさない点に対
して非常に大きな Penaltyを目的関数に付け加え
て制約のない問題へ変換する方法である。この方法

では、式(6.2.16)を以下のように書き換える。 
 すべり摩擦状態では 

 (6.2.21)
となり、粘着摩擦状態では 
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 (6.2.22)

となる。ここでは、 と は Penalty定数
であり、 と になると、Lagrange乗数
法と同様な結果が得られる。しかし、数値解析では

と を有限な数値しか取れないため、Penalty法
から得られた結果は第 6.1節で紹介した接触条件か
ら外れることになる。 
 Penalty法のメリットは以下である： 
・ Lagrange法と比べ、変数の数が増えない。 
・ プログラムに実装しやすい。 

Penalty法の欠点は以下である： 

・ 理論的には Penalty定数 と の数値が大き

くなると、正解に近い結果が得られるが、数

値計算の立場で見ると得られる方程式の性質

が悪くなり、線型方程式を反復法で解くと収

束性が悪くなる。 
・ 数値計算では Penalty定数 と の数値を有

限な数値にしか取れないため、得られた結果

は近似的である。 
 
(3) Augmented Lagrange法（乗数法） 

 Penalty法では、Penalty定数が大きくなるにつ
れて、変換される問題を数値的に行うことが困難に

なる欠点があった。このような欠点を改良するため

に、Lagrange関数に、Penalty項を付け替えた
Augmented Lagrange関数を導入して、
Augmented Lagrange関数の最小化と Lagrange
乗数の更新により最適解を求めるという

Augmented Lagrange法あるいは乗数法と呼ばれ
る手法が提案されている。 
 Augmented Lagrange法では、仮想仕事式を以
下のように記述する。 

 (6.2.23)
その制約条件は以下になる 

 (6.2.24)

 

 

 

 

ここでは、 と はユーザー定義定数であり、

Penalty定数のような大きな数値をとる必要がない。
仮に と は正確な接触力を表すとき、 がゼロ

になり、上式と式(6.2.19)は一致し、Augmented 
Lagrange法と Lagrange法は同義であることが分
かる。 
式(6.2.25)の解法はいろいろがある。その 1つは

単に Lagrange法の拡張であり、その Lagrange乗
数にユーザー定義定数を加え、Lagrange法は変換
される問題の不定性を取り除くことができる。この

とき、Lagrange法と同じく、変数の数が増えるが、
変換される問題の不定性を取り除くことができ、さ

らに と は大きな数値をとる必要がないので、

Penalty法における数値計算上の問題もなくなる。 
 上記の解法では、未知となる Lagrange乗数を直
接解く方法であり、変数の数は増える欠点があった。

そこで、Lagrange乗数を反復計算より解く方法（乗
数法）を提案された。その計算手順は以下になる。 

1. Lagrange乗数の初期値を仮定する。 
2. Lagrange乗数の初期値を利用し、式(6.2.25)
を解く。 

3. 接触力を更新する。 
4. 更新後の接触力は式(6.2.26)を満足するかど
うかをチェックする。満足したと判断する場

合では計算は終了し、そうでなければ

Lagrange乗数を更新し、ステップ 2に戻り、
もう一度計算する。 

 このアルゴリズムを採用すると、変換される問題

の変数の数は増えないが、反復計算が必要となる。 
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 Lagrange法と Penalty法と比べ、Augmented 
Lagrange法は若干の計算時間的な犠牲を払い、新
しい独立変数を導入せず、数値計算にも悪い影響を

与えることがない方法である。その他、Augmented 
Lagrange法を少し修正すれば、摩擦接触問題から
得られた非対称方程式を対称方程式へ変換でき、計

算コストの削減にも有力である。そのため、本ソフ

トウェアはこの方法を採用している。第 6.3節では、
この方法の実現詳細を説明する。 
 
(4) 自由度直接消去法 

 接触に関わる制約条件の中で、有効接触点の非貫

通条件（式(6.2.30)を参照）または粘着摩擦条件は
以下のように直接節点の位置関係を定義している。 

=0 (6.2.25)

=0 (6.2.26)

これらの方程式では、関連節点の変位を拘束し、そ

の拘束条件から直接変位自由度を削除することが

できる。 

 ある時刻 tで粘着摩擦条件(6.2.28)を満足すると
き、接触点の速度 以下の式が得られる。 

 (6.2.27)

または、 点 間の初期貫通量 であるとき、

式(6.2.27)から以下の拘束条件が得られる。 

 (6.2.28)

自由度直接消去法の応用は限られた範囲内しかで

きないが、Lagrange法と Penalty法のような数値
計算の問題を生じなく、Augmented Lagrange法
のような反復計算も必要がないので、有効な方法で

ある。 
 本ソフトウェアは微小すべり摩擦なし問題を処

理するとき、自由度消去法を採用している。 
 
6.2.3. 接触仮想仕事の線形化処理 
 Newton-Raphson法を用いて非線形方程式を解
くとき、その弱形式の線形形式 consistent接線係数

が必要となる。接触除く部分の consistent接線係数
は第 4章を参照できるので、この節では、接触の接
線係数を求める方法を説明する。 
 式(6.2.14)では接触仮想仕事を示している。 

 

(6.2.29)

本節では、この式に Hessian操作をかけ、線形化処
理を行う。 
 
(1) 法線方向 

 式(6.2.29)右側第 1項は法線方向変位と関わる仮
想仕事である。Lagrange法を採用するとき、その
線形化式は 

 (6.2.30)

となる。また、Penalty法を採用するとき、その線
形化式以下のようになる。 

 (6.2.31)

これらの式を得るため、次では 、 と の

計算方法をまとめる。 

 

(a) と  

 の変分は式(6.2.8)から得られた。 

 (6.2.32)

式(6.2.32)と同様であり、下記に示す。 

 (6.2.33)

 

(b)  

 式(6.1.17)と同様で、 
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 (6.2.34)
が得られる。 
 次では、接触面の接ベクトルおよび法線ベクトル

と関わる計算を行う。しかし、式(6.2.12)に示した
ように、接触仮想仕事を計算するとき、master面
の接ベクトルを使っているので、ここではmaster
面と関わるベクトルだけを議論する。 

 
(c) 接ベクトルの変分と増分 

 現配置の接ベクトルの定義は式(6.1.9)で表して
いる。ここで、接触点の接ベクトルは と

書き換え、その変分と増分は以下になる 

 (6.2.35)

 (6.2.36)

 
(d) 接触法線ベクトルの変分と増分 

 接線方向と法線方向の直交性条件

 

 (6.2.37)

が得られる。そごで、条件 を利用し、

法線ベクトルの変分は 

 

 (6.2.38)
が得られる。同様法線ベクトルの増分は 

 (6.2.39)

になる。 
 また、

から、 

 (6.2.40)

が得られる。 

 

(e)  

 まず式(6.1.16)を以下の形式へ変換する。 

 (6.2.41)

上式の変分を考え 

(6.2.42)

になる。次に式(6.2.42)の増分計算をとる。 

 

 

 (6.2.43)

上式の両側に かけると、 

 

 (6.2.44)
が得られる。この式に式(6.2.35)～式(6.2.38)、式
(6.2.40)～式(6.2.42)を代入し 

 (6.2.45)
となる。 
 
(2) 接線方向 

 式(6.2.29)右側第 2項はすべり方向変位、または
摩擦に関する仮想仕事である。式(6.2.29)に示した
ように、この摩擦仮想仕事式は以下である。 

 (6.2.46)

すべり摩擦状態では 
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 (6.2.47)

また、完全粘着状態において、Lagrange法を採用
するとき 

 (6.2.48)

となり、Penalty法を採用するとき 

 (6.2.49)

になる。 
 摩擦項の線形化形式を得るため、 、 と

を得る必要がある。ここでは、 は摩擦構成式と

深く関わるため、その説明は第 6.3節に譲る。また、
前節では がすでに得られ、続きでは を導く。 
 式(6.2.43)の両側に をかける。 

 (6.2.50)
そこで 

 

 (6.2.51)
である。また、 

 (6.2.52)
となるから 

 (6.2.53)
が得られる。 
 式(6.2.53)を式(6.2.47)に代入し 

 

 

 

 

 

 

 

(6.2.54)

が得られる。 
 以上のことから、接触に関わる仮想仕事式  （式
(6.2.29)）の増分は 

 

 (6.2.55)

となり、この式へ式(6.2.32)、式(6.2.45)、式(6.2.34)、
式(6.2.54)を代入すれば、 と の構成関係式

を除く、各項すべで揃えた。 と の構成関係

式は時間の増分計算手法と関わるので、次の節では

明らかにする。 
 
6.3. 有限要素法接触解析 
6.3.1. はじめに 
有限要素法を用いて接触解析を行う場合には、解

析すべき領域が有限要素によってモデル化され、表

面は端部を構成する要素の要素境界（3次元モデル
の場合は面）から構成される。したがって、接触条

件は端部の要素境界について考察することになる。 
そこで、第 6.2節で得られた仮想仕事式(6.2.4)の
離散化式は以下のような有限個変数の非線形微分

方程式になる。 
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 (6.3.1)

ここでは、 は内力ベクトル、 は接触力ベクト

ル、 は外力ベクトル、 は節点変数を表す。特

に は節点変位を表す場合では、uまたは とも書

く。本章では接触と関わる部分だけを説明する。 
 一般的には方程式(6.3.1)は非線形である。その非
線形性は と よるものである。内力ベクトルは

幾何非線形と材料非線形を含み、接触による非線形

性は第 6.1節および第 6.2節で説明した。式(6.3.1)

を線形化した式は以下になる 

 (6.3.2)

そこで、接触剛性マトリクスは以下のようになる。 

 
(6.3.3)

ここでは、接触に関わる外力ベクトルは接触力

として式(6.2.31)から計算でき、その線形化し
た式 は式(6.2.55)から計算できる。 
 本節での主な目的は式(6.3.2)に示した接触剛性
マトリクスを得ることである。 

 
6.3.2. 接触の離散化表現 
(1) 接触面の離散化表現 

 式(5.1.2)から、面要素内の任意一点座標は 

 
(6.3.4)

になる。ここで、 は形状関数であり、 は面

要素の節点数である。また、面要素内の一点接線方

向は 

 
(6.3.5)

になり、その法線方向は式(6.1.4)から計算できる。 
 

(2) 接触点探索 

図 6.3.1 slave面からmaster面までの距離 

接触点の定義は式(6.1.6)で与えられる。この条件
を利用し接触点の位置を計算する。 

 (6.3.6)
この最適化問題を Newton-Raphson法を利用して
解く。 
 Newton-Raphson法は最適性の必要条件を与え
る非線形方程式 

 (6.3.7)

を初期点 接触要素面の中心点から出発して、

繰り返して解くことより、最適点を見出す。 
 ここで、点 において を線形近似すると 

 (6.3.8)

となるので、解を次の点 とすると、 は 

 (6.3.9)

として、この計算 まで計算し続ける。 
 この計算完了すると、接触点 の

局所座標 が得られる。 
ここでは、 

 
(6.3.10)

 
(6.3.11)

とする。 
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(3) 接触面上の数値積分 

 離散化した接触仮想仕事式(6.2.31)は以下のよう
になる 

 
(6.3.12)

また、この式を要素ごとに積分すると、次のように

近似できる。 

 

 (6.3.13)

ここで、 は slave要素数、 は要素積分点数、

は積分点座標、 は積分点の重み、Jは Jacobian
を表す。または、 は積分点 kの節点変分ベクト
ルであり、 は積分点 kの接触力ベクトルを示し、
その詳細は(5)でに明らかにする。 
 積分点の Jacobianは下式で計算する。 

 (6.3.14)
式(6.3.1)に定義した接触力ベクトルは以下になる。 

 

(6.3.15)

式(6.3.15)の線形化式は以下になる。 

 

 

 (6.3.16)

ここで、 は積分点 kの節点増分ベクトルであり、
は要素内積分点 k の接触剛性マトリクスである。 

 式(6.3.2)で与える全体接触剛性マトリクスは以
下になる。 

 

(6.3.17)

 
(4) 摩擦力の増分計算 

 本節では、摩擦構成式(6.1.26)の時間積分方法を
議論する。ここでは、計算ステップ nの各物理量は
下付き添え字 nで表し、既知量だと仮定する。計算
ステップ n+1では、これらの物理量が更新され、
下付き添え字 n+1と表す。 
 摩擦力の計算は後退型 Euler積分方法より計算
する。具体的には、ステップ n+1時の節点変位が
得られた後、以下の手順で摩擦力を計算する。 

1) 粘着摩擦状態であることを仮定し、摩擦力

を計算する。 
2) 更新後の摩擦力は摩擦則(6.1.25)を満足する
かどうかをチェックする。満足している場合

では計算が終了するが、しない場合では、摩

擦則(6.1.26)を満足するように修正する。 
 Coulomb摩擦則を採用し、また Penalty法を用
いて計算する場合では、以下の計算になる。 

 (6.3.18)
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 (6.3.19)

 (6.3.20)

次にすべり条件式 がチェックされ、各変数を

更新する。 

 

(6.3.21)

また、Lagrange法を採用するとき、Lagrange乗
数は直接上式の と と対応しているので、

このアルゴリズムはそのまま利用できる。 
 式(6.3.21)の線形化式は 

 (6.3.22)
ここでは式 

 
(6.3.23)

 
(6.3.24)

を利用した。 
 
(5) 接触剛性マトリクスおよび接触力：Penalty法 

本節では、Penalty法を採用したときの接触剛性
マトリクスおよび接触力を導く。本ソフトウェアは

Augmented Lagrange法を採用していて、そのと
きの接触剛性マトリクスおよび接触力は Penalty
法とも少し変換した形になり、その内容は 6.3.3節
で詳細に説明する。 
式(6.3.15)また式(6.3.18)に示した節点変分と節

点増分ベクトルは以下のように書き、 

 (6.3.25)

 (6.3.26)

式(6.3.15)から接触力は下式へ書き換える 

 (6.3.27)

ここでは と 式(6.3.18)と(6.3.21)より計算する。
また、ベクトル , と は以下のように定義され

る。 

 

 (6.3.28)

 

 (6.3.29)

 

 (6.3.30)

 (6.3.31)

 (6.3.32)

ここで、マトリクス Aは式(6.1.24)で与える。 
 接触剛性マトリクスは法線方向とすべり方向剛

性マトリクスに分解され、 

 (6.3.33)

各項は式(6.3.16)、式(6.3.15)および式(6.3.22)より
得られる。ここで、 

 (6.3.34)

 

+ 
(6.3.35)
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であり、式(6.3.34)を展開すると 

 

 

 (6.3.36)

になる。 
 すべり方向の剛性マトリクス を得るため、次の

補助ベクトルを定義する。 

, ,

 

(6.3.37)

 (6.3.38)

 (6.3.39)

 (6.3.40)

 (6.3.41)

 

 (6.3.42)

ここでは、 は式(6.3.25)に定義されたベクトルで
ある。これらの式を利用し、式(6.3.35)の各項は以
下のように書き換える。 

 (6.3.43)

ここでは、 

 

 

(6.3.44)

また、粘着摩擦状態では 

 
(6.3.45)

すべり摩擦状態では 

 

 (6.3.46)
である。 
 
6.3.3. Augmented Lagrange法 
 本節では Augmented Lagrange法のアルゴリズ
ム詳細を議論する。 
 
(1) アルゴリズム 

 Augmented Lagrange法の支配方程式は式
(6.2.23)～式(6.2.24)で示している。この方法は反復
計算を利用し、正確な Lagrange乗数値を求められ
ることを 6.2.2(3)で説明した。本節では、接触仮想
仕事を以下のように書き換える。 
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 (6.3.47)

ここで、時間間隔 間内の反復計算ステップ

数を上付き添え字(k)と示した。 
 Augmented Lagrange法の計算手順はすでに
6.2.2(3)節に説明した。この節では、まず接触力と
Lagrange乗数の更新方法を説明し、最後に詳細な
計算手順をまとめる。 
 
(a) 接触力の時間積分 

 後退 Euler積分法を採用し、式(6.2.24)の増分計
算を行う。 

 (6.3.48)

 

 (6.3.49)
ここでは 

 (6.3.50)

 (6.3.51)

また、 は時刻 での摩擦条件(6.2.35)より計算す
る。 

 (6.3.52)

 

(6.3.53)

 
(b) Lagrange乗数の更新 

 更新後の接触力はまだ収束していないと判断し

た場合では、Lagrange乗数を更新する必要がある。
ここでは、時間間隔 間内のすでに kステッ
プを計算完了し、ステップ k+1の Lagrange乗数を
計算しようとする。 
 法線方向 Lagrange乗数の更新は以下になる。 

 (6.3.54)

すべり方向 Lagrange乗数を正しく選択すれば、摩
擦力 と等しくなるので、式(6.3.48)と比べれば、
すべり方向Lagrange乗数の更新は以下になること
が分かる。 

 

 (6.3.55)

ここでは、 は式(6.3.52)より計算する。 
 
(c) 計算手順 

1. 初期設定 

  

 

k=0 

2. 下式を解き、 を得る。 
 

 

ここでは、 は式(6.3.51)より計算する。 

3. 式(6.3.50)～式(6.3.54)を従い、接触力 と

を計算する。 

4. 以下の接触拘束条件をチェックする。 

であるが、粘着摩擦状態では

である。 

これらの条件を満足すれば収束を判定し、計算を

終了する。そうでない場合には式(6.3.54)と式
(6.3.55)に従い、Lagrange乗数を更新する。 
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(2) 対称化処理 

 後退Euler積分法式(6.3.48)～式(6.3.52)を採用し
ている場合、式(6.3.47)から得られる consistent接
触剛性マトリクス は非対称である。この節では、

第(1)節で示したアルゴリズムを修正し、 を対称

化する方法を説明する。 
 対称化処理のため、式(6.3.54)に示した摩擦降伏
関数を以下のように修正する。 

 (6.3.56)

ステップ kでの計算では、 を定数として処理

しているため、摩擦力の更新計算(6.3.18)は 

 

(6.3.57)

となり、その線形化式から非対称項を取り除くこと

ができる。式の詳細は(3)節に明らかにする。 
 式(6.3.56)に示した処理は計算ステップ kでは、
法線方向の接触力の変化を無視することである。こ

の処理により、更新後の接触力は Coulomb摩擦則
を満足しないことになる。しかし、Lagrange乗数
は常に式(6.3.54)、式(6.3.55)より更新するので、理
論的には対称化処理のない計算と同じ結果が得ら

れる。 
 対称化処理後の Augmented Lagrange法の実行
手順は上記(c)に示した手順を参照することできる
が、以下の区別を注意すべきである。 

1. ステップ 2では、 の計算は式(6.3.49)に示

したものではなく、式(6.3.57)である。 

2. ステップ 4 での収束判断では、 の誤差も

チェックする必要がある。 

 
(3) Consistent剛性マトリクスおよび接触力 

 6.3.2(5)節では、Penalty法の接触剛性マトリク
スと接触力の計算式を求めたが、本節では、非対称

Augmented Lagrange法または対称化した
Augmented Lagrange法の consistent剛性マトリ

クスおよび接触力の計算式を求める。また、接触力

の計算方法を除き、考え方は節 6.3.2(5)節に示した
方法と同じなので、本節では、結果だけを示す。 
 
(a) 接触力 
 式(6.3.29)と同じく、接触力は以下になる。 

 (6.3.58)

ただし、ここでは と 式(6.3.48)、式(6.3.49)また
は式(6.3.57)より計算する。 
 式(6.3.33)と同じく、剛性マトリクスは法線方向
とすべり方向剛性マトリクスからなる。 

 (6.3.59)

 
(b) 法線方向接触マトリクス 

 (6.3.60)
式(6.3.35)と同じく、接触方向剛性マトリクスも以
下のように分解する。 

 (6.3.61)

 
(c) 非対称剛性マトリクス 

 式(6.3.43)、式(6.3.44)と照らし合わせ、対称化処
理なし時の剛性マトリクスは以下になる。 
 粘着摩擦状態では 

 
(6.3.62)

すべり摩擦状態では 
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 (6.3.63)
 
(d) 対称剛性マトリクス 

式(6.3.43)、式(6.3.44)と照らし合わせ、対称化処
理後の剛性マトリクスは以下になる。 
 粘着摩擦状態では 

 (6.3.64)

すべり摩擦状態では 
 

 
(6.3.65)

 
6.3.4. 微小すべり解析 
 すべりによる接触面の幾何形状を無視できる場

合は、微小すべり状態と定義する。このとき、線形

化処理した仮想仕事式は以下になる。 

 

 (6.3.66)
または接触面の相対すべり量は 

 (6.3.67)

になる。これらの式を式(6.3.16)、式(6.2.34)と比べ
ると、有限すべりと微小すべりの区別が分かる。微

小すべり計算は有限すべり計算と比べ、計算式は短

くでき、計算コストを削減できる。本ソフトウェア

では、微小すべり計算も選択できる。 
 対称化した Augmented Lagrange法を採用する
とき、法線方向接触剛性マトリクスは以下になる。 

 (6.3.68)

摩擦なし状態では、接触剛性マトリクスは式

(6.3.67)になる。 
 摩擦のある場合、粘着摩擦状態では 

 (6.3.69)

すべり摩擦状態では 

 

 

(6.3.70)

または、対称化した Augmented Lagrange法を採
用するとき、すべり状態では 

 
(6.3.71)

となる。 
 
7. 例題 
7.1. 円柱のくびれ変形解析 
 軟鋼などの弾塑性材からなる円柱が軸方向に引

っ張られる場合では不安定なくびれ変形が現るこ

とはよく知られる現象である。有限要素法による解

析では、この現象を再現できることがその解析能力

を示す検証の 1つである。本解析は Simoら[9]が用
いた解析モデルを参考し作ったものである。 
 図 7.1は解析モデルを示している。対称性から、
円柱の 8分の１をとり、431個 6面体要素から構築
する。円柱の長さは 53.334である。円柱の端の半
径は 6.413であり、その軸方向変形を固定する。ま
た、この端面から半径は徐々に減少し、円柱の中央

では半径は 6.3054となる。この解析では、円柱の
中央面に 6.0の強制変位を加え、その中央面の半径
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変化(くびれ)を観察することである。また、本計算
は線形等方硬化Mises弾塑性モデルを採用し、その
ヤング率、ポアソン比、降伏応力、硬化係数は、そ

れぞれ 206.9, 0.325, 2.0, 1.0である。 

 
図 7.1 円柱のくびれ変形解析（8分の 1モデル） 
 
図 7.2は変形後の円柱形状を示し、色の濃淡は縦

方向の変位を表している。本計算結果から得られた

くびれ量は 3.528であり、既存の結果とよく一致し
ている。 

 
図 7.2 円柱のくびれ変形後の形状 

 
7.2. スチール円板とゴムの接触変形解析 
本解析問題はNAFEMS(https://www.nafems.org) 

Advanced Finite Element Contact Benchmarks
問題の 1つである。この問題は変形体間に摩擦が有
する有限すべり接触問題を解析する能力を検証す

るものである。 

 
(a) 

 
(b) 

 

(c) 
図 7.3  スチール円板とゴムの接触変形図 

(a) 円板回転前；(b) 円板回転途中；(c) 変形完了後 
 
 このベンチマークは半径が 30mmのスチール円
板は長さ 240mmのゴム上に転がる問題である。こ
こでは、円板の中心は固定し回転させ、円柱とゴム

間の摩擦よりゴムを長さ方向に剛体変位を起こし、

そのゴム板の長さ方向の変位量が検証対象になっ
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ている。 
その解析過程は以下である： 
 ・円板を完全に固定し、ゴム板の底面に円板方向

へ 3mmの強制変位を加える。 
 ・円板の中心は固定し 360度を回転させる。この
とき、ゴム板の底面は上方向の変位を固定させ、

長さ方向は完全にフリーにする。 
 スチールとゴムの材質は以下である： 
 ・スチール：ヤング率 210kN/mm2、ポアソン比

0.3 
 ・ゴム(St. Venant-Kitchhoff超弾性材)：ヤング
率 10kN/mm2、ポアソン比 0.45、または、摩擦
係数は 0.3である。 

 
 本解析から得られたゴム長さ方向の変位は

182.8mmであり、既存の結果と一致している。 
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